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Abstract

Objective: To evaluate the blood flow velocity (BFV) in superior mesenteric artery (SMA) and celiac artery (CA) in
first 2 days of life in preterm (less than 32 week and less than 1 kg) and to study the influence of various factors on
the blood flow velocities in the same population.

Methods: 50 preterm less than 32 week with birth weight less than 1kg was included in the prospective
observation study. Assessment of SMA and CA blood flow velocities (PSV: peak systolic velocity, EDV: end diastolic
velocity, TAV: time average velocity) was done twice at 24hr (20-30) and at 48hr (40-54). Blood flow indices
(resistive index; RI, pulsatile index; PI) was calculated using the formula. Simultaneously data for various factors
influencing the blood flow in SMA and CA was collected in the similar population.

Results: SMA BFV increases from 24hr after birth and continue to rise thereafter in first 2 days. Significant
increase in SMA EDV (6.77 ± 2.38 vs 8.74 ± 4.42) and SMA PSV (37.16 ± 10.64 vs 42.72 ± 14.66) was noted
postnatally. Increase in SMA TAV was also observed. CA BFV showed negative trend from 24hr after birth with
reduction of all velocities (PSV, EDV and TAV). CA TAV showed significant reduction at 48hr of age compared to
24hr (28.22 ± 9.81 vs 25.00± 8.07). Significant PDA was associated with attenuated BFV in both the SMA and CA
on both the occasions. Other factors associated with adverse blood flow velocities were blood transfusion and
anemia. Trophic feeding was associated with increase blood flow velocities in both SMA and CA.

Conclusion: Postnatally increase in SMA BFV was noted in first 2 days of life indicating improved intestinal
perfusion and opposite trend in CA BFV. Significant PDA was associated with abnormal blood flow velocities in both
SMA and CA.

Keywords: Blood Flow Velocity (BFV); Superior Mesenteric Artery
(SMA); Celiac Artery (CA); Hemodynamically Significant Patent
Ductus Arteriosus (HSPDA)

Introduction
Significant physiological and functional changes takes place at

various organ level including gastrointestinal system (GI) in preterm
newborn after birth. Superior mesenteric artery (SMA) and celiac
artery (CA) supplies the blood to most of the intestine and vital
abdominal organs respectively. Feeding problems are common in
immediate postnatal period due to various anatomical and functional
reasons leading to complication in the form of necrotizing enterocolitis
(NEC). Blood pressure, capillary refill time (CRT), blood lactate,
metabolic acidosis has limited value to predict the regional organ
perfusion. Recently bedside ultrasound performed by trained
neonatologist proved to be highly beneficial and regional organ blood
flow velocities (BFV) and perfusion can be assessed more accurately
with pulse wave Doppler.

Increase in SMA blood flow velocities was documented from birth
onwards during the first month of life in preterm infants [1,2] which

implies improved intestinal perfusion and maturation. Postnatal
physiological changes in intestinal BFV were reported previously by
few authors in term and late preterm infants [3]. Data related to
physiological changes of CA BFA is limited in preterm newborns [4,5].
Various factors like cardiovascular status, neural control, humoral
substances and local control determines the regional organ blood flow
[6,7].

The objective of this study is to evaluate the blood flow velocity
changes in major abdominal arteries (SMA and CA) in the immediate
postnatal period in high risk population of preterm less than 32 week,
less than 1kg and to study the various factors influencing the velocities.
This data helps the clinician to understand the pattern of BFV in two
major arteries in early postnatal life, which might help to reduce the
feeding related problems and GI complications.

Methods

Subjects
Infants admitted to tertiary neonatal intensive care unit with GA

less than 32 week and birth weight less than 1kg were enrolled for the
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prospective study to evaluate the blood flow velocity in SMA and CA
with simultaneous assessment of various factors influencing the blood
flow pattern. Exclusion criteria were major congenital malformations,
critical congenital heart disease and evidence of perinatal asphyxia
requiring significant resuscitation (need of drugs).

The demographic data of study population is shown in table 1 and 2.

This study was approved by Dubai health authority (DHA) ethical
committee and written informed consent was obtained from the
parents before the subject enrollment.

Study design
50 infants fulfilling the inclusion criteria were included in this

prospective observation study to evaluate the blood flow velocity in
SMA and CA with simultaneous assessment of various factors
influencing the blood flow pattern. The study population underwent
bedside ultrasound twice at 24hr (20-30) and 48hr (40-54) to measure
the blood flow velocities in SMA and CA. The measurements were
done by single certified neonatologist trained in functional
echocardiography and data for various factors influencing the blood
flow velocities was collected simultaneously.

Factors studied which potentially influence the blood flow
velocities
• Patent ductus arteriosus (PDA): Hemodynamically significant

PDA (HsPDA) is defined as diameter ≥1.5mm, ratio of left atrial to
aortic root dimensions ≥1.5:1, and reversal of diastolic flow in the
descending aorta [8-10].

• Blood transfusion (BT): Infants receiving packed RBC transfusion
as per the unit guidelines

• Anemia: Infants with hemoglobin (HB) less than 10gm%
• Presence of umbilical arterial catheter (UAC)
• Infants with proved positive blood culture sepsis
• Infants receiving trophic feeds
• Small for gestation (SGA) infants: Defined as birth weight less than

10th centile for GA

Doppler ultrasound studies
SMA and CA BFV were measured using pulsed Doppler ultrasound

(vivid q GE, USA) and a 10 MHz transducer. A real-time two
dimensional image and color flow mapping was used to identify the
arteries. SMA was identified as the second major branch of the
abdominal aorta, originating just below the CA (Figure 1). The
sampling volume of the pulsed Doppler was placed 3 mm distal to the
origin of the SMA and CA using a real-time two-dimensional image
from a longitudinal abdominal approach. Angle correction was used
when necessary.

When stable waveforms measurements were obtained, the curves
were traced and the blood flow variables in each artery were calculated
from at least three consecutive cardiac cycles of optimal quality .The
recorded blood flow variables were: peak systolic velocity (PSV), end-
diastolic velocity (EDV), time-averaged mean velocity (TAV). At least
two sets of measurements were taken at each time point, and the mean
of these readings was used for the final analysis. The resistive index
(RI): (PSV-EDV)/PSV. The pulsatile index (PI) :( PSV-EDV)/TAV.

Figure 1: Doppler ultrasound view illustrating identification of the
superior mesenteric artery (SMA) and celiac artery (CA) arising
from the aorta (AO) in in a newborn.

Statistical analysis
Blood flow velocities – PSV, EDV and TAV and indices RI and PI

for SMA and CA are shown as Mean ± SD. All the blood flow velocity
variables at 24hr (20-30) and 48hr (40-54) were compared by using
paired t-test. A p-value of <0.05 was considered significant. Statistical
analysis were performed by using SPSS (Statistical Package for Social
Sciences) version 20.0.

Results
Fifty infants were enrolled. The mean birth weight and GA of

enrolled patients was 844±153gm and 27±2.1week respectively (table 1
and 2). Clinical variables that may affect the SMA and CA BFV are
listed in table 1.

Variable Value

Birth weight (gm.) 844±152

Gestational age(week) 27±2.1

Significant PDA n (%) 13(26)

Blood transfusion n (%) 8 (16)

UAC n (%) 12(24)

Trophic feeds n (%) 7/21*

14/42**

Anemia n (%) 6 (12)

Sepsis n (%) 4(8)

SGA n (%) 20(40%)

Data are the mean±s.d. unless otherwise indicated.

n= number

(*7 infants received trophic feeding at 24hr of age and ** 14 infants received
trophic feed at 48hr of age)

PDA-patent ductus arteriosus

UAC-umbilical arterial catheter

SGA-small for gestation

Table 1: Demographic data and clinical variables for 50 new-born.
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For each subject these variables did not change between the two
scans. Postnatally, SMABFV showed rising trends with significant
increase PSV (P 0.006) with simultaneous significant increase SMA
EDV (P 0.001), which resulted in low RI and PI (table 3).

Variable Distribution Frequency

Sex Male 26

Female 24

GA(wk) 22-25+6 26

26-27+6 13

28-32 11

Birth weight(gm) 500-750 16

751-999 34

Table 2: Demographic data.

Variable 24hr(20-30) 48hr(40-54)

SMA PSV(cm/s) 37.16 ± 10.64 42.72 ± 14.66**

EDV(cm/s) 6.77 ± 2.38 8.74 ± 4.42***

TAV(cm/s) 15.90 ± 5.02 17.90 ± 7.27

RI 0.80 ± 0.05 0.79 ± 0.06

PI 1.84 ± 0.45 1.89 ± 0.37

CA PSV(cm/s) 51.38 ± 14.70 49.73 ± 13.53

EDV(cm/s) 15.37 ± 6.77 13.89 ± 6.00

TAV(cm/s) 28.22 ± 9.81 25 ± 8.07*

RI 0.69 ± 0.09 0.72 ± 0.08*

PI 1.32 ± 0.47 1.46 ± 0.40*

*p<0.05, **p<0.01, ***p<0.001

Data are the mean±s.d. unless otherwise indicated.

PSV: Peak systolic velocity; EDV: End-diastolic velocity; TAV: Time-averaged
mean velocity; RI: Resistive index; PI: Pulsatile index; SMA: Superior
mesenteric artery; CA: Celiac artery.

Table 3: Blood flow velocity variables in superior mesenteric artery
(SMA) and celiac artery(CA) in 50 ELBW newborn.

SMA TAV also showed rising trend with advancing age although
not statistically significant. On the contrary, CA BFV (PSV/EDV)
showed negative trend, which was associated with high RI (P 0.025)
and PI (P 0.027) with advancing age. CA TAV was significantly low at
48hr (P 0.023). The graphical representation of velocities in two major
arteries is represented in figure 2.

13 preterm (table 1) were diagnosed with hemodynamically
significant PDA. HsPDA was associated with high SMA PSV (44.40 ±
11.51 Vs. 35.11 ± 9.58, P 0.009) and low SMA EDV resulting high RI
(0.86 ± 0.06 vs. 0.78 ± 0.04, P0.000) and high PI (2.19 ± 0.52 vs. 1.75 ±
0.38, P 0.004) compared to preterm without PDA. The adverse effect of
HsPDA on mesenteric circulation persisted on day 2.11 infants were

diagnosed with significant PDA at 24hr of age and the number
increased to 13 at 48hr of age (not shown in the table).

Figure 2: Blood flow velocities in SMA and CA.

Similar influence of HsPDA was observed on the CA BFV which
was associated with high CA PSV (60.81 ± 13.64 Vs 48.71 ± 14.03) and
low CAEDV resulting high RI (0.76 ± 0.10 vs. 0.67 ± 0.07 ,P 0.002) and
high PI(1.66 ± 0.76 vs. 1.23 ± 0.30, P 0.007) on day1. This adverse
effect of HsPDA on CA BFV was persisted on day 2 postnatal age.

Blood transfusion (n=8; table1) was associated with low SMA EDV
(5.62 ± 2.97 vs. 6.98 ± 2.23), resulting high RI and PI in these babies.
CA BFV influenced more adversely with BT compared to SMA
resulting high PSV (66.18 ± 11.77 vs. 48.56 ± 13.56, P 0.001*) and high
RI (0.77 ± 0.04 VS 0.71 ± 0.087, P 0.048*).

In SMA, Preterm with UAC (n=12; table 1) showed almost similar
velocity pattern at 24hr (PSV: 35.83 ± 9.84 vs. 37.58 ± 10.98, EDV 6.75
± 1.97 vs. 6.77 ± 2.53, TAV 15.12 ± 4.09 vs. 16.14 ± 5.30) and 48hr
(PSV: 38.29 ± 9.18 vs. 44.11 ± 15.86, EDV 8.79 ± 3.55 vs. 8.72 ± 4.70,
TAV 15.89 ± 5.69 vs. 18.53 ± 7.65) compared to preterm without UAC.
CA BFV were also comparable in preterm with UAC and without
UAC.

Anemia (n=6; table1) was associated with high SMA PSV (24hr:
43.41 ± 14.34 vs.36.30 ± 9.95, 48hr:44.50 ± 8.24 vs. 42.47 ± 15.38) and
low EDV(24hr:6.41 ± 4.24 vs. 6.81 ± 2.09,48hr:8.66 ± 3.77 vs. 8.75 ±
4.54) on both the occasions, leading to high RI (0.83 ± 0.11 vs. 0.799±
0.05) and PI (1.82 ± 0.77 vs. 1.85 ± 0.40) compared to preterm with
normal hemoglobin. This negative effect of anemia on SMA BFV was
significant on day 2, resulting high PI (2.21 ± 0.26 vs. 1.84 ± 0.36*) and
high RI (0.84 ± 0.02 vs. 0.78 ± 0.06).Similar influence of anemia was
observed in CA, high PSV (24hr: 68.91 ± 9.89 vs. 48.98 ± 13.65 *) and
low EDV.

Sepsis (n=4; table1) was associated with high CA BFV (PSV: 61.25 ±
12.33 vs. 50.52 ± 14.69, EDV: 22.82 ± 5.44 vs. 14.72 ± 6.53, P 0.02, TAV:
39.50 ± 11.79 vs. 27.23 ± 9.13, P 0.01) on day 1 and similar influence
on mesenteric circulation was noted, which was not statistically
significant.

Trophic feeding (n=7 at 24hr/21 at 48hr; table1) was associated with
positive influence on SMA and CA velocities. SMA TAV (20.31 ± 9.16
Vs. 16.15 ± 4.99, P 0.044) was higher in trophic fed infants on day 2.
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SGA preterm (n=20; table1) had low SMA velocities compared to
AGA (n=30), whereas CA BFV were comparable in both the groups.

Discussion
Pulse wave Doppler has been used as a non-invasive parameter to

assess the intestinal BFV in human newborns by measuring the blood
flow in SMA and CA. Although there are some reports of physiological
changes in intestinal blood-flow velocity after birth in healthy term
infants [11,12] little is known about these changes in immature high
risk preterm. To understand the maturation of intestinal circulation
and pathophysiology of intestinal diseases in this population, we
studied postnatal blood-flow velocity pattern in SMA, CA and factors
influencing the blood flow by means of pulse Doppler ultrasound.
Values at 24hr (20-30) were used as baseline reference values for the
comparison.

Pappci et al. [1] and Coombs et al. [11], reported significant
increase in SMA PSV and other velocities postnatally during the first
month although velocities directly proportional to GA. Matsova et al.
[3] and Kocvaroval et al. [13] showed significant increase in all SMA
BFV resulting in low RI and PI in term and late preterm respectively.
Agata et al. [12] and Martinussen [14] reported significant increase in
SMA EDV compared to PSV in term infants during first 96hr of life,
which predicts the improved intestinal perfusion compared to RI and
other velocities. We also report that progressive increase in SMA BFV
postnatally with significant increase in EDV and PSV-a finding in
agreement with other investigators, which reflects improved intestinal
perfusion. RI reflects vascular resistance, thus the index is inversely
related to blood flow. A change in vascular resistance is presumed to
influence diastolic BFV more than peak systolic BFV [14]. Under
normovolemic conditions, the increase in PSV, EDV and TAV in the
SMA are caused by a redistribution of abdominal systemic blood flow,
because of the progressive opening of vascular beds due to a decrease
in peripheral resistance under the influence of physiological factors
like increasing blood pressure, increasing stroke volume and closure of
the ductus arteriosus [2].

Pappci et al. [1] and Matsova et al. [3] in their studies showed
positive trend in CA PSV, whereas CA EDV and TAV showed reducing
trend resulting high RI and PI in preterm and term newborn. We
reported negative trend in all CA velocities in first 48hr after birth
resulting significantly high RI and PI – a finding in agreement with
other reports possibly because of complex tributary system of celiac
circulation [1].

Effect of significant PDA is not widely reported in CA, as it was
studied in SMA. SMA EDV has been reported to decrease with
symptomatic PDA [11,15,16]. Frank et al. [17] reported high SMA PSV
and negative EDV with significant PDA with normalization to
reference values after PDA closure. SMA diastolic BFV and TAV
increases after closure of the ductus arteriosus with indomethacin was
reported by Jakob et al. [18] and Shimada et al. [19]. El-Khuffash et al.
[20] reported lower CA BFV in presence of PDA in his recent study.
Consistent with these reports, our study also showed abnormal SMA
(high PSV and low EDV) and abnormal CA BFV in presence of
significant PDA.

Banerjee et al. [21] reported no significant change in SMA velocities
after blood transfusion in ELBW preterm in agreement with other
studies in term and old preterm infants. Pitzele et al. [22],
demonstrated attenuated BFV response (low PSV) immediately post-
transfusion in VLBW preterm. Nelle et al. [23] reported post-

transfusion decrease CA BFV in stable preterm. Our study showed
compromised intestinal blood flow after transfusion in study
population although effect was significant in CA (high PSV).

In the present study, the presence of UAC did not have any adverse
effect on the SMA and CA BFV – a finding that is in agreement with
other investigators [24,25]. Position of UAC was confirmed with a
follow up x-ray done after the insertion (all the infants in the study
population had high position UAC). We observed slightly low PSV in
both major arteries with UAC in situ without compromising the
perfusion. Roll et al. [24] and Shah et al. [25] demonstrated that there
was no difference in blood-flow velocities in the SMA and celiac axis
before and after removal of a UAC in the high position. On the
contrary, Rand et al. [26] showed low PSV with the UAC in situ.
Havranek et al. [27] concluded that Pre-prandial and postprandial
SMA BFV responses to minimal enteral feedings were not affected by
the presence of a UAC.

Delay in the introduction of enteral feed is major cause for postnatal
growth restriction adding to the morbidity in preterm infants [28-30].
Enteral feeding is essential for the promotion of intestinal maturation
and growth, as it increases the intestinal blood flow, stimulates
intestinal motility and induces release of trophic factors. Leidig et al.
[31] and Fang et al. [32] reported significant increase in PSV after
feeding in preterm infants hence concluded positive correlation
between increase SMA velocities and feed tolerance. Other
investigators, Martinussen et al. [4] and Thompson et al. [33], reported
increase pre-prandial SMA EDV and increase SMA PSV after trophic
feed respectively. In agreement with these reports, our study showed
higher velocities in both major arteries after trophic feeding indicating
improved perfusion.

Animal models demonstrate that anemia can impair gut blood flow
and increase oxygen extraction as a compensatory mechanism [34,35].
Dani et al. [36] and Grisen et al. [37] showed no change in SMA BFV
in anemic preterm secondary to autoregulation, which was in
agreement with two other studies, which showed that SMA BFV
parameters were not altered by anaemia [2,38]. Effect of anemia on CA
BFV not studied previously in preterm infants. Our study concluded
that anemia is associated with compromised intestinal blood flow
(more in SMA) in high risk preterm, which needs to be studied in
larger trial.

Kempley et al. [39] reported a similar effect to adult systemic
inflammatory response in preterm with sepsis in both SMA and CA,
although significant effect in later vessel.In agreement with this report-
our study reported increased velocities in culture positive septic
preterm infants with significant hyperemia in celiac circulation, which
may result in increased cardiovascular demands in sepsis. Consistent
with previous report [40], our study demonstrated low SMA BFV in
SGA preterm compared to AGA; whereas CA BFV in both the groups
were comparable.

This is clinically relevant study, which gives us a basic idea of
baseline blood velocity pattern in two major arteries in high risk
preterm infants. This study contributes to understand the physiological
changes at the major viscera during the postnatal period. This study
not only identifies the various factors influencing the intestinal blood
flow pattern, but also describes the rate at which blood flow is
affected .The main strengths of this study were, it’s prospective and
adequately subjects size population. The other advantages were the
strict inclusion and exclusion criteria. On the other hand, the study
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had some limitations. Firstly, it was not a randomized trial and was
conducted at single centre.

Conclusion
High risk preterm infants showed improved intestinal perfusion

associated with increased SMA velocities after birth.CA BFV showed
opposite trend in the same period. Preterm with significant PDA have
attenuated blood velocities in both arteries.
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