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Abstract

In 1990 Blum, Noble and associates utilized a candidate approach to associate the first genetic polymorphic
association with severe alcoholism that was published in JAMA. This experiment was based on a “blue print” of the
reward circuitry proposed as the “brain Reward Cascade”. Impairment of this system leads to aberrant substance
seeking behavior. Over the last five years newer and more sophisticated techniques have been developed, including
whole genome sequencing, as well as exome sequencing. While there are different schools of thought regarding
appropriate approaches to dissecting a very complex disorder known as Reward Deficiency Syndrome (RDS) as an
umbrella term for all addictions, future approaches may combine both genome sequencing with gene candidates.
Importantly, GWAS/WES generally provides the most value for highly penetrant, rare alleles and as such may not
currently be as informative as the candidate gene approach. However, since there is convergence of GWAS and
neurotransmitter clusters including specific genes (e.g. DRD1, DRD2, DAt1, etc.) albeit small contributions for each
gene, thousands of studies have elucidated risk alleles to RDS behaviors. Thus, we are proposing herein that we
should not hasten to “throw out the baby with the bathwater”, because genetic addiction risk stratification depends
upon the current candidate gene analysis.

Keywords: Candidate genes; Neurotransmitters; Dopaminergic

Abbreviations:
Genome Wide Sequencing Association Studies (GWAS); Whole

Exome Sequencing (WES); Reward Deficiency Syndrome (RDS)

Genome Wide Association Studies vs. Candidate Gene
Studies: Controversy

The need for genetic testing as a way of understanding or
pinpointing therapeutic targets is certainly the wave of the future. It is
well established that many polymorphisms since the earliest study
from our laboratory on the DRD2 gene has morphed into a
remarkable list of gene polymorphism associations in the field known
today as Psychiatric Genetics. It is no longer acceptable simply to
utilize Diagnostic and Statistical Manual (DSM) criteria as the only
method of diagnosis of psychiatric disorders [1,2]. We are hereby
proposing that coupling known standard pencil and paper tests (e.g.,

Addiction Severity Index among others) along with DSM and Genetic
Addiction Risk Score (GARS) should enhance our information on
each patient presenting for example to an addiction clinic for
treatment. In fact it will provide a stratification risk profile removing
current quessing, as well as DNA targeted therapeutic opportunities. It
is further proposed that since we are beginning to understand the
power of Genome Wide Association Studies (GWAS) [1]; Whole-
Exome Sequencing (WES) and Epigentic Wide Association Studies
(EWAS) studies, and especially epigenetics on gene expression via
mRNA transcription, knowing these hot spots will pave the way for
either highly specific pharmaceuticals directed at select neuronal sites
(reduce toxic side effects) or nutrigenomic solutions. In either case, we
strongly recommend additional studies to provide the recovering
addict with an epigenetic [3-4] tool to activate DA D2 receptors while
attenuating the anti-reward effects of DA D1 and possibly D3
receptors, respectively. Finally, we as neuroscientists should begin to
perform studies that control for possible comorbid medical and
psychiatric conditions in their research (dual diagnosis) this work
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supports earlier non-genetic concepts of addiction in psychiatric
medicine [5-9].

We are cognizant that there is controversy related to the issue of the
importance of both GWAS and WES analytical approaches relative to
candidate association and linkage studies to unravel contributions of
specific genes and associated polymorphisms to addiction liability.
Our laboratory in the late 1980’s, realizing the complexity of the
problem of both vulnerability and resilience for risk of drug abuse and
other behavioral addictions, decided to analyze candidate genes based
on a theoretical model we developed and subsequently published and
identified as the “Brain Reward Cascade” [10]. Our initial approach
utilizing this “blue print of reward” involved association rather than
linkage analysis because Lander et al. [11] argued against linkage
analysis for complex disorders like drug addiction instead of linkage
analysis as previously accomplished with one gene – one disease
(OGOD).

Important advances have been made over the last two decades
concerning “Psychatric Genetics.” Certainly, substantial genetic
contributions to addiction liability are now supported by earlier twin
studies and more recently linkage, candidate association and GWAS
studies. Animal studies initially focused upon genes that targeted
major drugs of abuse mechanism of action. Many of these studies were
successful in the identification of quantitative trait loci including
association of chromosomal 9 (DRD2 gene) and ethanol behavioral
responses [12] as well as other reward genes including serotonin,
opioids and GABA [13]. Most of these and many other studies have
identified gene/proteins that affect responses to drugs of abuse [14].
Parallel to these animal studies, human genetic research exploded over
the last five years, to inexpensively detect genetic variation in the
human genome. The era of genome sequencing began with the
identification of single-nucleotide polymorphisms (SNPs) utilizing
gene chips. Very recently we are also utilizing WES which utilizes
high-throughput sequencing to identify the molecular arrangement of
DNA base pairs specifying the coding regions of a person’s genome
also referred to as the exome. While this is exciting, it may not have
clinical utility, because the exome only comprises about 1% of the
entire genome [15]. However, while the exome represents ~1-2% of
the genome, 85% of currently described disease alterations are located
within the coding regions (this 1-2%). The prudent argument here is
that psychiatric disease may over-represented within the ~15% of
alterations outside of the coding region (regulatory elements,
epigenetic factors which are more often associated with multi-factorial
diseases.

Compared to an enormous literature on candidate gene analysis
(6120 studies) there is currently a paucity of GWAS/ WES studies
relevant to addiction liability (239 studies). A commentary by Hall et
al. [16] from NIDA and others have argued that candidate gene
analysis may be wrong. However, they do suggest that from many
GWAS studies the following: (1) many genes play roles in addiction;
variants of genetic alleles additively contribute to risk for addiction; (2)
classes of genes (such as reward circuitry based genes) are paramount
in explaining both risk and resilience in all addictions; (3) considerable
genetic differences exist, yet GWAS signal convergence occurs on
particular candidate genes.

It is well –known that the action of psychoactive drugs primarily
affects synaptic neurotransmission. Reynolds et al. [17] correctly
suggests that specific genes for neurotransmitter receptors and
transporters have provided strong candidates in pharmacogenetic
research in psychiatry. Moreover, there are many inconsistencies

between candidate gene and GWAS studies. Reynolds further suggests
that consistencies have accumulated through candidate gene studies
involving the dopamine D2 receptor; serotonin transporter; and
GABA dysfunction in mental illness. Moreover, Han et al. [18]
reported that following GWAS, functional enrichment analysis
revealed specific genes to underlie alcohol risk such as cation
transport, synaptic transmission, and transmission of nerve impulses
representing meaningful biological processes. In agreement Uhl et al.
[19] suggest that following GWAS, clusters of SNPs within selected
genes display 10(-2) > p>10 (-8) associations with dependence in
many independent studies. Importantly, along these lines specific
candidate genes associated with substance dependence phenotypes, for
example, in Native Americans include: OPRM1,CRN1, COMT,
GABA2, MAOA, and HTR3-B [20]. In a cross species GWAS study to
access risk genes in alcoholism it was found that 47 genes associated
including GABA, signaling pathway and cell communication [21]. In
one study using GWAS and factor analysis Agrawal et al. [22] found a
high loading (0.89) for alcohol craving and convergence resulted in an
association of SNPs in DRD3 and craving.

While there are many more examples showing promising
convergence between GWAS and candidate gene analyses, albeit
others showing no convergence, Li et al. [23] conducted a meta-
analysis of GWAS and candidate gene analyses to interpret genetic risk
for drug addiction and consider potential mechanisms associated with
this risk. When they compared the lists of drug-related genes
identified by molecular biological studies and those of association
studies, they observed significantly higher participation in similar
genetic interaction networks than expected by chance. This work is
underscored by Li’s earlier work revealing that KARG analysis
evaluated 1500 human genes regulating addictive behaviors and found
that these genes significantly impact glutaminergic and dopaminergic
pathways [24] (Figure 1).

Figure 1: DRD2 Taq A1 allelic prevalence in alcoholics and controls

Source: Noble 2003; Chen et al. 2005 [25]

GWAS studies in psychiatry frequently fail to explain a large
proportion of variance and non-replication of individual SNPs.
Derringer et al. [25] utilizing a “selective scoring” whereby variants
(273 SNPs) from eight dopamine-related genes for association with
cocaine dependence were considered. They identified a four SNP score
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significantly associated with the variance. They suggested that (1) if
only SNPs of genes with theoretical importance are investigated, than
replicable effects are more likely to be identified; furthermore, (2) if a
scoring approach evaluating the aggregate of the highest associated
SNPs is utilized, than more replicable effects can be identified than
would be revealed in individual SNP level studies. Along with these
precautions, we also propose the utilization of “super controls” to
eliminate cross contamination of having a control phenotype that also
carries the associated disorder, especially when considering the
complex nature of RDS. In one study, we found that while the risk
allele of the DRD2 Taq A1 in over 3,000 non-screened population
controls was 32%, super controls (screened for all RDS behaviors in
the proband and family) was only 3% [26]. Also in developing GARS
we are cognizant that the proposed test only provides risk stratification
and not actual diagnosis of any disorder including RDS. Most
importantly, full comprehension of “psychiatric pharmacogenomics”
will undoubtedly involve epigenetic factors, such as DNA histone
modifications (e.g. methylation and or deacetylation) that can affect
responses to drugs and polymorphic antecedents for either
vulnerability or resilience to reward behaviors like RDS [27-36].
Finally, GWAS/WES generally provides the most value for highly
penetrant, rare alleles and as such may not currently be as informative
as the candidate gene approach.
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