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Introduction
Pectin has a long history of use in food applications, such as jam 

preparation that can be traced back to two centuries ago [1]. In the food 
industry, pectin is used as a food additive, gelling and thickening agent, 
stabilizer, preserver, and as substitutes in many health foods. The Food 
and Agricultural Organization of the United Nations recommended 
pectin as a safe food additive that is acceptable without limitation for 
daily intake [2]. Pectin’s can be found in cell wall tissues of all higher 
plants. Pectin’s sold in today’s market are mostly made from citrus 
peels or apple pomace which are byproducts of juice processing. In 
the cell walls of apple, citrus, or sugar beet, the macromolecular chains 
of pectin undergo hydrophobic interactions, hydrogen bonding and 
other chemical or physical interactions with other macromolecules 
such as cellulose, hemicellulose, or proteins. Such interactions 
leave 70% to 90% of the galacturonic acid units present in pectin to 
contain methyl ester groups. Citrus and apple derived pectin can be 
extracted by aqueous acid or base [3,4] or by digestion with a mixture 
of microbial enzymes [5,6]. Technologies that have been used during 
acid extraction include ultrasonic, microwave, autoclave, or extrusion-
assisted extractions [7-15]. Pectin thus obtained retains a higher degree 
of esterification (DE). Pectin can also be extracted from sunflower head 
residues (SFH, containing 15% to 24% pectin in dry weight). Since 
pectin interacts with other cell wall components in sunflower heads 
via ionic cross-linking, it can be isolated from SFH by ion-exchange 
methodology. SFH pectin is characterized by a lower DE than apple or 
citrus pectin. 

High DE pectin gels in the presence of high sugar concentrations 
(>55% w/w) whereas low DE pectin gels in the presence of divalent 
metal ions. With an increase in the awareness that obesity is a poor 
health factor, low-calorie and low-sugar foods have started to replace 
high calorie and high sugar foods in the market place. This has 
promoted the use of SFH pectin in the food industries. The low DE 
nature of SFH pectin has increased its applications in healthy and 
functional foods. Such applications include the manufacture of low 
sugar beverages and jellies, low calorie yogurts and confectionery jelly 
products. In addition, gels from low DE pectin are thermally reversible. 
That makes SFH pectin more valuable than high DE pectin from other 
sources in many food processes, such as bakery jams sterilizing and 
milk pasteurizing. 

Static ion exchange is the standard methodology to extract 
pectin from SFH residues. Extraction with aqueous sodium 
hexametaphosphate (SHMP) is often used for the removal of calcium 
and magnesium divalent metals [16,17]. Numerous combinations of 
different solution pH, operational time, temperature, and solid/solvent 
ratios have been investigated as systems for the extraction of pectin 
from the heads of several different sunflower varieties. Examples of 
these varieties are Helianthus annuus L. var. Cargill (N. Dakota, USA) 
[18,19], Cnel Pringles (Buenos Aires, Argentina) [20], and Goegan 
(Iran) [21]. 

To develop an economically effective and environmentally friendly 
method to extract SHF pectin, we used aqueous sodium chloride from 
rock salt, instead of SHMP, to remove Ca++ and Mg++ divalent ions 
from raw SFH residues that was followed by acidic pectin extraction. 
The capability of sodium chloride to remove the divalent ions from 
SFH was compared with that of using SHMP. Furthermore a gravity 
flow dynamic method was applied for the extraction of SFH pectin. 
The efficacy of the dynamic method was compared with that of static 
method. Pectin thus obtained was evaluated for galacturonic acid 
content and other molecular characteristics.

Materials and Methods
Sunflower heads and chemicals

Sunflowers (Helianthus annuus, Avangard) were harvested from a 
suburb of Dushanbe, Tajikistan. The de-seeded heads were sun-dried, 
ground to particles with the diameter of 0.6 mm to 1.0 mm using a 
laboratory mill. Prior to use, the SFH particles were dried in an air-
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circulated oven at 110°C, for 16 h, then placed in zipped plastic bags 
stored in desiccators over calcium oxide. 

Sodium Chloride from rock salt was obtained from a local market 
(Dushanbe, Tajikistan) and purified by re-crystallization prior to use. 
Sodium hexametaphosphate and other chemicals were purchased from 
Sigma-Aldrich.

Deionized (D.I.) water was prepared by ion exchange columns 
(Millipore).

SFH pretreatment and Pectic Polysaccharides (PP) extraction 

Prior to ion exchange reaction, soluble components in SFH 
residues were removed by washing with water (25 L/kg) followed 
by a mixture of water and ethanol (1/3, v:v; 25 L/kg) at 75°C for 15 
minutes in each step [16,17]. The washed SFH particles were subjected 
to calcium removal followed by pectin extraction using acidic solutions 
at various pH values. Both static and kinetic methodologies were used 
to obtain pectin. 

Dynamic method: As illustrated in Figure 1, the washed SFH 
particles (25 g) were loaded into a glass column (diameter 3.5 cm), 
which was gently tapped to ensure that it was tightly filled. Sodium 
chloride solutions (600 ml, pH 7 ± 0.2) with the concentrations of 
4, 8, and 12% (w/v) were allowed to flow through the column at 2.0 
ml/min at 75°C. This step removed divalent ions from the cell walls 
of SFH residues and the side-chain carboxylic groups in the pectic 
polysaccharides (PP) were ionized as Na+ form, which was followed by 
elution with HCl solutions (pH 1.8-5.5) to obtain PP. The elution was 
performed at various flow rates at 75°C. 

The eluents were collected, cooled to room temperature, centrifuged 
at 6000 rpm for 60 minutes. This step separated PP into two phases, 
pectin gel (PG) in the bottom from soluble pectin (PS) in the top. The 
PS phase was pumped to a reservoir and diluted with 2-fold deionized 
(D.I.) water. The diluted pectin solution was then forced to pass 
through a set pf hollow fiber membrane module (MiniKross Sampler 
Hollow Fiber Module 100 KD PS, KrossFlow, USA). The concentrated 
pectin solution thus obtained was dried by a commercially available 
spray drier to form pectin powder (100 μm to 500 μm). 

Static method: The washed SFH particles (25 g) were placed into 
a conical flask equipped with a reflux condenser, 600 ml of NaCl 
solutions (pH 7 ± 0.2) with the concentrations of 4, 8, and 12% (w/v) 
were added, and then the mixtures were stirred at room temperature 
for 24 hours. After removing the NaCl solution, the extraction was 
carried out by stirring the powders in acidic water with solution pH 
ranging from 1.5 to 5.5 for 60 to 90 minutes for several changes at 
85°C. The extracts were collected for pectin analysis as described in the 
previous paragraph.

For comparison purpose, SHMP was used to extract calcium ions 
by kinetic and static methods under the same conditions.

Analytical methods

Ash content and Ca++/Mg++ content: Ash content in raw SFH and 
treated SFH was measured by the method described in the Official 
methods of Analysis of the Association of Official Analytical Chemistry 
[22]. Briefly, 10 g SFH sample was placed in a furnace, incinerated at 
525°C for 4 h; cooled to room temperature and stored in a desiccator 
over calcium oxide. The contents of calcium ions and magnesium ions 
in both of the untreated and treated SFH powders were determined by 
titration with EDTA [23].

Swelling behavior: The swelling properties of SFH particles were 
determined by immersing a sample (1.0 g) in 50 ml D.I. water at room 
temperature for 48 h. The weight of the swelled samples was recorded 
after removing the surface water by tapping with Tissue Wiper. The 
swelling degree was then calculated according to (Ww -Wd)/Wd × 100%, 
where Ww and Wd were the weights of wet sample and dry sample, 
respectively [24].

Anhydrogalacturonic acid (AGalA) content and the degree 
of methyl esterification of the galacturonic acid groups of pectin 
(DE): AGalA content in dry pectin samples, eluents (kinetic method), 
and extraction solutions (static method) was determined by the 
Sulfamate/3-phenylphenol colorimetric method [25] with an UV/
VIS spectrophotometer (Thermo Spectronic, UK) at 520 nm. The DE 
of pectin was analyzed by a method provided by CP Kelco [26]. DE 
was then calculated by comparison of the amounts of carboxylic acid 
groups before and after de-esterification.

Figure 1: Process line of Sunflower Pectin Production. 1, capacity for solutions; 2, pump; 3, Hydrolysis columns for; 4, tank for CaCl2 solutions; 5, Filter 
press; 6, Centrifuge; 7, capacity for pectin solution; 8, membrane modules; 9, spray drier; 10, tank for pectin powders.
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estimated by comparing the ash content of SFH washed with SHMP 
and with NaCl. As shown in Table 1, the ash content in NaCl washed 
SFH is higher than SHF washed with SHMP. The difference could be 
attributed to more Na+ uptake from NaCl rather than from SHMP in 
the wash. In other words, we concluded that less Ca++ and Mg++ were 
removed by SHMP than by NaCl. Such a conclusion was reasonable in 
that the concentration of Na+ in 8% NaCl was about 3 times as many 
as that in 5.0% SHMP, although the ionic strength of 5.0% SHMP was 
much higher than 8% NaCl. Although both NaCl and SHMP were 
water soluble, NaCl dissolved in water much more readily than SHMP. 
It should be noted that 5.0% of SHMP was highly viscose. In fact it 
was difficult to make highly concentrated SHMP solutions and treat 
SFH with it. In the following experiment, no SHMP solutions with 
the concentration higher than 5.0% were used. In addition, since the 
Ca++ content in SFH residues were much higher than Mg++ content, the 
chemical association of pectin with other components in SFH tissue 
was mainly via Ca++ chelating, in the following experiment we mainly 
investigated the effect of Ca++/Na+ ion exchange on the pectin yield and 
the molecular characteristics of obtained pectin. 

Ca2+ ions isolation from SFH by NaCl and SHMP

The dissociation of Ca++ from SFH residues by various 
concentrations of NaCl solution was evaluated by dynamic and static 
methods. As shown in Figures 2a and 2b, the efficacy of the calcium 
isolation depended on the concentration and volume of the NaCl 
solutions used. In Figure 2a, the curves of calcium measured in fractions 
of isolation solutions vs. NaCl volume displayed an asymmetrical bell 
shaped profile. Initially, the amount of calcium released to solutions 
increased quickly, reached the peak, and then dropped sharply. Beyond 
200 ml, the amounts of calcium measured in the isolation solutions 
decreased more slowly and finally level off. Doubling the concentration 
of NaCl from 4% to 8%, doubled the amount of calcium isolated, 
also, the elution peak shifted to the left, from 150 ml to 100 ml. When 
the salt concentration increased to 12%, the concentration of Ca++ at 
the peak maximum was tripled compared that eluted with 4% NaCl. 
Nonetheless, the peak position did not change. Calcium isolated from 
SFH could also be expressed as the cumulative amount of calcium 
removed vs. the elution time (Figure 2b). As we can see, at a fixed 
elution time, the use of a more concentrated NaCl solution removed 
more calcium ions from SFH. For example, about 90% of calcium was 
isolated in 3 h by elution with 12% NaCl; while only 65% and 58% of 
Ca++ ions in SFH residues were replaced by 8% and 4% NaCl solutions, 
respectively, for the same elution period. For an isolation solution with 
a fixed concentration, the isolation efficiency decreased as elution time 
passed. The cumulative curves in Figure 2b appeared to emulate first 
order exponential curves. Initially, the removal of Ca+2 was relatively 
slow (data not shown). Shortly thereafter, there was an exponential 
increase in Ca+2 removal with time. There was a marked decrease in the 
rate of Ca+2 removal at 75 minutes for the use of 12% NaCl solution. 
The remoal rate of Ca++ in the 25-75 minutes range was larger than the 
rate of removal below 25 minutes or above 75 minutes. The cumulative 
isolation curves for using 8% and 4 % NaCl isolation solutions also 
emulated first order exponential curves but with smaller rate constants. 
Clearly these results indicated that ion exchange between Na+ in the 

HPSEC and molar mass detection: Waters HPSEC (Waters Inc., 
Milford, MA, USA) delivery system with 2-Channel Vacuum Degasser 
coupled with a ViscoStar model differential pressure viscometer 
(Wyatt Technology, USA), a Waters 2410 differential refractometer 
(RI), and two PL-Aquagel size exclusion columns (OH-60 and OH-40) 
in series and an auto sampler (717 Plus Auto Injector, Waters) were 
used. Dry samples (2 mg/ml) were dissolved in mobile phase (0.05 M 
NaNO3), centrifuged at 20,000 g for 30 minutes and filtered through 
a 0.22 μm Millex HV filter (Millipore Corp., Bedford, MA). The flow 
rate was 0.8 ml/min and the injection volume was 100 μl. Sample was 
run in triplicate. Column effluents were detected by ViscoStar, and a 
RI Detector in series. The electronic outputs from the detectors were 
connected to separate serial ports in the same personal computer 
in a manner which permitted data to be collected and processed by 
ASTRA 5.3.4.13 (Wyatt Technology) and Breez (Waters) software 
simultaneously. The columns were calibrated using a series of Pullulan 
standard samples (range of Mw: 30-900 × 103). Values of Mw and 
Mz were obtained using universal calibration. The refractive index 
increment (dn/dc) used was 0.134 ml/g in 0.05 M NaNO3 [27]. The 
experiments of pectin extraction and characterization were repeated 
6 to 12 times. The most repeatable data were collected and the average 
was used for result interpretation.

Results and Discussion
bAsh, calcium and magnesium content in SFH residues

SFH residues had an ash content of 11.5 %, from which the 
amount of calcium and magnesium was found to be 1.95% and 0.77%, 
respectively (Table 1). Similar values were found by Edrees et al. [28]. 
SFH residues were washed with water and water/ethanol solutions 
to remove minerals, pigments, fats, and waxes [16,17]. As shown in 
Table 1, the ash content of SFH dropped from about 11.5% to 7% after 
washing. The removal of minerals and fat and wax reduced interactions 
between cell wall components. Thus the structure of SFH was loosened, 
facilitating water penetration and water absorption. This structural 
change was evident by the increase in degree of swelling from 2.7% 
for unwashed SFH to about 3.2% for the SFH washed with water and 
water/ethanol (Table 1). Since Ca++ and Mg++ were mainly bound to the 
carboxyl groups in the galacturonic acid segments of pectin, it is not 
surprised, the fraction of Ca++ and Mg++ in the ash of washed SFH was 
increased from 1.95% and 0.77% before washing to 2.02% and 0.98%, 
respectively. 

Interestingly, the use of NaCl or SHMP solutions to treat the water-
prewashed SFH resulted in an increase in ash content which was 8.9% 
for those washed with NaCl and 8.3% for those washed with SHMP, 
in comparison with 7% in ash content of those just washed with water 
and water/ethanol. These results could be attributed to the uptake 
of Na+ by polysaccharides in SFH residues which occurred by ionic 
exchange during the washing process. Table 1 shows that washing 
with water/ethanol could not remove Ca2+ and Mg2+ ions whereas 
washing with 8.0% sodium chloride removed 64% of Ca++ and 82% of 
Mg++ from the SFH. No quantitative data was available for Ca++ and 
Mg++ removal from SFH by SHMP, due to the quarantine nature of 
SHMP presented in the washing solution. Nevertheless it could be 

Treatment Ash content, % Ca++, % Mg++, % Swelling, % 
Non-treated SFH 11.47 1.95 0.77 2.72
Washed with water/alcohol  7.22 2.02 0.58 3.04
Washed with water, then with 8.0 % NaCl  8.95 0.72 0.14 3.47
Washed with water, then with 2.5% SHMP  8.23 - - 3.31

Table 1: Ash, Ca++ and Mg++ contents in SFH residues.
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Acid Hydrolysis of SFH and PP extraction 

Dynamic mode: Figure 4 shows the influence of flow rate of acidic 
solutions on PP extraction, as well as on the yields of PS and PG in PP. 
More PP (the amount of PS + PG) was obtained at a higher flow rate 
than at the lower one under the present experimental conditions. 

Furthermore, more PG and less PS were obtained when the flow 
rate was increased. In the case of acidic extraction of PP, PS, and PG 
from SFH after removing chelating reagent of divalent metal ions, 
there were more than one process that could occur by allowing acidic 
solutions to flow through. These included PP release (or intermolecular 
dissociation) from other cell wall polymers, diffusion of released PP 
through the network of other cell wall polysaccharides, and the 
degradation of higher molecular weight PP into small molecules. Mass 
diffusion and intermolecular dissociation were the processes with 
more or less physical/mechanical characteristics. The increase in such 
mechanical forces, such as eddy currents or stir rate, would certainly 
accelerate mass transfer. These forces were favored by an increase in 
flow rate [29,30]. In contrast, the acid degradation of PP is a chemical 
reaction that requires a relatively longer contact time period [31]. 
Presumably, this could explain why increasing the flow rate of the 
extraction solution caused an increased amount of PP with decreased 
PS/PG ratios. For convenience, the flow rate of 3.0 ml/min was chosen 
for acidic hydrolysis in following experiments in an attempt to evaluate 
the effects of other parameters, such as solution pH and ionic strength 
on the yields of PS and PP. 

The effect of solution pH on PS yield is shown in Figure 5. At 
solution pH values around 1.5-2.0, PS yields reached a maximum. 
Beyond that pH range, PS yield decreased up to pH 3. At solution pH 
values ranging from 4 to 5, PP degradation was inhibited. There was 
no further change in PS yield could be detected. The extremely acidic 
solution, for example, at pH 1.2, pectin degradation supposedly should 
be accelerated, however, much less amount of PS were detected than 
that at pH 2 or higher. This could be attributed to small molecules 
weight PP that generated at extremely acidic solution and were alcohol 
soluble and couldn’t be moved out by aqueous solution. From these 
results, acidic solution at pH 2 was chosen as the optimal hydrolysis 
solution. From Figure 5, it also could be learned that at a fixed pH value 
more PS was hydrolyzed-produced from SFH that was pretreated with 
a higher rather than a lower concentrated NaCl solution. As shown 

solution and Ca++ on the cell wall tissues of SFH residues was strongly 
dependent on the electrolyte concentration of the solvents.

The percentage of calcium removed from SFH residues by NaCl 
in static mode are shown in Figure 3. The amount of isolated calcium 
increased from 58% to 64% when the concentration of NaCl in solution 
increased from 4% to 8%. Increasing the NaCl solution to 12% increased 
the percentage of calcium extracted to 68%. In comparison of Figure 3 
to Figure 2, it can be found that the total amounts of Ca2+ isolated from 
SFH by the static and dynamic methods were roughly the same, when 
NaCl solutions of same concentration were applied. However, it took 
much less time by dynamic method than static method to remove same 
amount of calcium ions. For example, about 64% of calcium could be 
removed by 8% NaCl in 3.5 h by a dynamic method; while to isolate the 
same amount of calcium using 8% NaCl by a static method required 18 
h. These results showed that applying a gravity flow dynamic method to 
replace Ca++ with Na+ ions from SFH rather than a static method saves 
energy and labor.

Figure 2a: Isolation of calcium ions from SFH residues by NaCl solutions of 
three concentrations following washing with a water and ethanol mixture: (▲) 
4% NaCl, (•) 8% NaCl, (X) 12% NaCl, the elution rate is 2.0 ml/min. Eluent was 
collected every 50 ml.

Figure 2b: Cumulative amount of Ca++ isolated from SFH residues by NaCl 
solutions at the concentrations of (from top to bottom): 12%, 8%, and 4%. The 
elution rate is 2.0 ml/min.

Figure 3: Percentage of calcium ions replaced from SFH by NaCl of three 
concentrations by static method. 
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in Table 1, the more Ca++/Mg++ removed from the 3D structure, the 
loser the cell wall structure the SFH residues became; thus facilitating 
the release of PP from SFH tissues and enhancing mass transportation 
through the structure. This trend was also observed from the hydrolysis 
of SFH residues that were pretreated with SHMP solutions with various 
salt concentrations (Figure 6). PS yields decreased with the increase 
in pH values of the hydrolysis solution from pH 2 to pH 6, and with 
the decrease in SHMP concentration used in the decoupling step. 
Furthermore, the comparison of Figure 5 to Figure 6 revealed that 
more PS was extracted from SFH residues that were pretreated with 
8% NaCl than with 5.0% SHMP solutions. This finding confirms the 
previous conclusion that more Ca++/Mg++ ions were replaced by Na+ 
ions from 8% NaCl solution than from 5.0% SHMP solution (Table 1). 

Galacturonic acid (GalA) content is the most important component 
in determining the physical, chemical, and biological properties of 
pectin [32], pectin gels [33], and other pectin-derived substances 
[34,35]. Table 2 summarizes the effects of salts in solutions used to 

remove Ca++ and Mg++, and pH values of the elution solutions used 
in the followed step of acidic extraction on the anhydrogalacturonic 
acid (AGalA) content in soluble pectin fractions (PS). In general, AGA 
content in extracted PS decreased with increasing pH values. Typically, 
AGalA content increased with the increase in salt concentration of the 
isolation solutions except in a few cases where small variations were 
observed for samples pretreated with 2.5 and 5.0% SHMP solutions. 
Table 2 also showed some differences in AGalA content between 
samples pretreated with NaCl and SHMP; however, no meaningful 
analysis could be performed unless further study is conducted.

Static mode: For the purpose of comparison to the dynamic 
method, the static method was applied to the extraction of pectic 
polysaccharides from SFH residues after calcium ions in the residues 
were isolated either by NaCl solutions or by SHMP solutions. The 
resultant PP in the extraction solutions was analyzed for PS, PG, and 
AGalA contents (Table 3). Consistent with extraction results from 
the dynamic method, results from the static method showed that 
more PS was extracted from the SFH residues by NaCl pretreatment 
than by SHMP. When NaCl solution was used for isolation, PS yield 
increased with increased NaCl concentration. Similar results were 
also observed for SFH treated with SHMP solution, except for a few 
exceptions. Furthermore, pH values of the extraction solutions, as well 
as the types and the concentrations of isolation solutions gave similar 
results on AGA content in PS fractions as was found by the dynamic 
method (Table 2). Finally, more PS was obtained from SFH residues by 

Figure 4: Effect of acid flow rate on (●) PP, (■) PS, and (▲) PG yields in PP 
fractions obtained from SHR hydrolysis at pH 2.0.

Figure 5: Influence of the pH of the acidic extraction solution on pectin yields 
from sunflower head residue that was pretreated with (•) 8% or (x) 12% NaCl 
solutions. The elution rate was 3.0 ml/min.

Figure 6: Influence of extraction pH on pectin yields. Calcium ions in the SFH 
residues were removed by the use of 0.5% (∆), 2.5% (•), and 5.0% (X) SHMP 
solutions at 2.0 ml/min. The elution rate of extraction solution was 3.0 ml/min.

Figure 7: Differential weigh fractions versus molar mass of PS in the first 8 
fractions obtained by dynamics extraction mode.
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the dynamic method than by the static method, when the extraction 
solution was at pH 2.0.

Molecular characterization of pectin prepared from SFH 
residues by kinetic method: Based on the above experiments, 
sunflower pectin was prepared with the dynamic model, using 8% 
NaCl as the isolation solution at a flow rate of 2.0 ml/min at 70°C 
followed by extraction with pH 2 acidic solutions at a flow rate of 3.0 
ml/min at 85 °C. Extraction fractions, 50 ml for each, were collected. 
PP was separated into PS and PG. These were analyzed for viscosity, 
[η], number-average molecular weight (Mn), weight-average molar 
weight (Mw), and molecular polydispersity (Mw/Mn). Table 4 shows 
Mw and [η] of the pectin in PS obtained from the first 8 fractions of 
the eluents. Fractions 3, 4 and 5 had the highest values of Mw among 
the 8 fractions collected. Their Mw values ranged from 146 to 162 K 
Da with relatively large polydispersities. These fractions as a group 
also showed higher intrinsic viscosities, [η]. Consequently, the PG of 
correlative fractions had lower Mw values. It should be noted that the 
molecular weight detected by universal calibration correlated very 
well with that obtained from the MALS method (compare sample #6 
and #6* in Table 4). It demonstrates the efficacy of applying a simple 
instrumental method using ViscoSatr coupled with refractive index 
detection and the universal calibration procedure in detecting Mw and 
MWD of biopolymers. 

It was also found that there was a lack of correlation between Mw 

obtained by capillary viscometer (data not shown) and that from SEC. 
Possibly this lack of correlation could be attributed to much higher 
concentrations being measured by capillary viscometer than by SEC. 
It has been shown that pectins undergo concentration dependent 
aggregation [36]. Differential weight fraction as a function of molar 
mass for the 1st eight fractions collected as obtained by dynamic 
extraction is shown in Figure 7. ASTRA software allowed assessment 
of the molecular shape based on the measured molar mass and rms 
radius. A plot of log rms radius against the log of the molar mass, 
called a Conformation Plot, showed the relationship between the two 
quantities. The slope of this graph gave a good estimate of the shape. The 
slope was approximately 0.33 for hard spheres or compact molecules. 
Random coils or less compact molecules often have slopes in the range 
of 0.5 - 0.6, whereas rods or highly extended molecules had a slope 
which was approximately 1.0. The shape factor, “a”, in series of pectin 
fractions extracted at pH 2.0 and 1.2 respectively from SFH (Tables 4 
and 5) ranged from 0.39 to 0.46. These values revealed that the soluble 
pectins ranged in size somewhere between that of a hard sphere and a 
random coil. Possibly, this size range was observed because all pectin 
fractions were highly aggregated due to their low DE. Furthermore, 
the large values of Mz also might be the indicative of macromolecular 
aggregation [37,38]. 

The molecular characteristics of PS obtained by hydrolysis at pH 
1.2 are shown in Table 5. Comparing them with data shown in Table 

pH of Elution Solution Concentration of SHMP in isolation solutions, % Concentration of NaCl in isolation solutions, %
0.5 2.5 5.0 4.0 8.0 12.0

1.60 66.4 (0.3) 68.6 (0.2) N/D 67.4 (2.4) 69.2 (2.2) 69.4 (4.3)
2.00 65.0 (0.2) 66.4 (3.3) 68.0 (4.1) 64.2 (1.3) 68.2 (3.1) 66.6 (0.3)
3.50 62.0 (1.4) 65.2 (2.9) 67.2 (3.2) 63.2 (0.7) 65.4 (0.1) 66.5 (5.2)
5.60 58.2 (0.5) 64.6 (2.5) 66.0 (0.8) 60.8 (4.1) 62.6 (1.6) 66.0 (0.8)

Table 2: Effects of salt concentrations and solution pH on AGalA content in PS (%).

pH of acidic 
extraction solutions 

% NaCl in isolation 
solutions

PP yield, % AGalA, %
in PS

% of SHMP in isolation 
solutions

PP yield, % AGalA, % in PS
PG PS PG PS

1.6 4.0 2.1 8.7 60.2 0.5 N/D 5.6 58.5
8.0 2.2 11.2 58.8 1.5 N/D 6.4 62.9

12.0 1.4 13.6 69.6 2.5 N/D 7.8 60,4
2.0 4.0 0.4 7.1 57.2 0.5 N/D 4.7 54.4

8.0 1.0 10.4 55.2 1.5 N/D 5.3 62.0
12.0 0.8 13.3 66.0 2.5 N/D 6.5 62.6

3.5 4.0 0.1 5.2 54.2 0.5 N/D 3.6 50.4
8.0 0.3 8,8 50.4 1.5 N/D 4.5 60.0

12.0 0.8 13.1 66.7 2.5 N/D 5.3 60.4

Table 3: Pectin yield and GalA content in hydrolytic solutions prepared by the static method.

PP fractions PS PG
Mwx10-3 Dalton Mz x10-3 Dalton Mw/Mn Rhw, nm a** Mwx10-3 Dalton Mw/Mn Mzx10-3, Dalton

1 124.3 1386  8.6  8.7 0.43 33.2 7.5  89
2  95.4  738  5.3  8.3 0.46 39.5 3.8 126
3 152.7 2022  8.8  9.2 0.45 48.2 3.3 228
4 145.5 1901  6.6  8.8 0.44 40.5 3.8 122
5 161.5 1887 12.2  9.1 0.43
6 127.3 1600  7.3  8.7 0.44
6* 129.0 -  3.13 20 -
7  76.8  820 23.2  7.2 0.39
8  87.0  921 13.3  7.5 0.40

Samples were isolated from SFH residues eluted by 8% NaCl at the flow rate of 2 ml/min followed by acidic solution (pH = 2) at the flow rate of 3 ml/min at 87°C. * Data 
from SEC with MALLS detector; ** a value of “a” obtained from conformation plot of ASTRA software, showing polymer shape and form. 

Table 4: Molecular characteristics of SFH pectins obtained by HPSEC examination.
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4, confirmed that the higher acidic condition, i.e. pH 1.2, lead to pectin 
degradation, which is undesirable for most applications.

Conclusion
We have developed a gravity flow dynamic method for the 

extraction of pectin polysaccharides from SFH residues, a byproduct 
of sunflower oil processing. The procedure consisted of two steps. The 
first step was calcium isolation using an 8% NaCl solution, whereas the 
second step was an extraction of PS at pH 2.0. The dynamic method 
was more efficient than the static method with respect to pectin 
yield, processing time, and energy-consumed. In comparison with 
SHPM, NaCl was easier to dissolve in water. Thus one could apply 
NaCl solutions of a higher salt concentration than SHPM for calcium 
isolation. Consequently, more rapid calcium isolation was possible 
with NaCl than with SHMP. Therefore NaCl also expedited over SHMP 
the pectin extraction step which followed.

Sunflower is a major economic crop in Central Asia, where there 
are abundant rock salt reserves also available in the Fergana Valley 
area spreading across eastern Uzbekistan, Kyrgyzstan, and Tajikistan. 
The use of domestic chemicals to intensify pectin extraction from SFH 
residues should be able to further lower the cost of pectin production 
in those countries. 
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