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Abstract

A promising question in neuroscience is enlightening the interaction between heart and brain electrophysiological
activities and its relationship with the cognitive status. Our aim here is to study the Heart-Brain Interplay (HBI) and
assess whether HBI alterations can be biomarkers for Alzheimer’s disease progression. To this end, we recorded
resting state Magnetoencephalography (MEG) for healthy controls and two groups of Mild Cognitive Impairment
(MCI) patients without cardiovascular alteration symptoms: stable and progressive to Alzheimer’s disease. Our
results demonstrated that MCI patients showed alterations in the HBI that can be summarized as follows: (i) heart
evoked responses were interrupted in MCI and this lack of interaction correlate with cognitive performance; (ii) the
influence of the heart activity onto brain networks fluctuates along cardiac cycle, being less responsive the MCI
networks, and (iii) including HBI-MEG signatures in a machine learning procedure to predict AD progression
outperform the results obtained using standard resting state MEG signatures. Our results highlight the role of heart
in cognitive neuroscience by showing that basal brain networks are interrelated with the cardiac dynamics and
propose the use of heart reference as a biomarker. The ignorance of the cardiac dynamic could be resulting in
wastage of relevant information otherwise critical to understand disease as dementia.

Keywords: Heart-brain connection; Resting state connectivity; Heart 
evoked brain response (HER); Heart evoked brain connectivity 
(HEC); Progression to alzheimer disease; Mild cognitive impairment

Introduction
The study of the Heart-Brain Interplay (HBI) would deeply change 

our conception of cognition and will edify a most comprehensive 
understanding of diseases so far considered purely brain-originated. 
This is the case of Alzheimer Disease (AD). On one hand, previous 
studies in dementia have related heart and brain stating a high 
comorbidity between AD and Cardiovascular Diseases (CVD) [1]. 
These deleterious processes usually share most of the vascular risk 
factors which that, when accumulated during adulthood, substantially 
increase the risk of dementia [2]. This fact has been reported reversely 
as well, since it is well described that cardiovascular health improves 
cognitive performance and reduces the risk of cognitive impairment 
and brain network malfunctioning [3-5].

The HBI approach assumes that the heart modulates the brain 
activity. Therefore, heart-associated signals can be used to obtain time-
locked brain electrophysiological activity, which has largely better 
signal to noise ratio in comparison to standard non-reference resting 
state brain activity. To analyze the HBI we took two different 
approaches. First, Heart Evoked brain Response (HER), which has 
been detected in different neocortical areas such as the insula, the 
anterior cingulate cortex, the amygdala and the somatosensory cortex 
[6-11]. Second, we propose a novel approach named Heart Evoked 
brain Connectivity (HEC) estimated by means of computing the time-
frequency brain functional connectivity, with wavelet coherence,

referenced to the heart pulse to be compared with the non-reference
functional connectivity.

These two sets of the HBI measurements, HER and HEC, could be
applied to disentangle whether HBI associated neurophysiological
signatures can distinguish between healthy and pathological aging.
Previous studies have demonstrated alterations in the organization of
the Default Mode Network (DMN) in patients in the process of AD.
However, it has not yet been elucidated the origin of these network
alterations. A potential hypothesis is the hyperexcitability of the
cortical neurons due to the toxicity of the amyloid plaques over the
inhibitory terminals [12]. This loss of the excitation/inhibition balance
lead to a less flexible state of the oscillatory activity and a tendency to
hypersynchronize neurophysiological signals at different frequency
bands [13]. Furthermore, these electrophysiological signatures have
been linked with an increased risk of conversion to AD [13,14]. A
relevant unanswered question is what triggers this hypersynchrony.
Here we explore heart associated signals as one potential source for
causing such network anomalies. No previous studies have explored
the HBI in patients in the process of AD and how these interactions
modulate brain activity and cognitive performance. Therefore, two
main hypotheses will be tested:

• The first hypothesis states that HER obtained at the sources level,
will show differences between Mild Cognitive Impairment (MCI)
patients (early stage of the AD continuum) and age matched healthy
elders. We expect that these differences will emerge in the MCI
patients as an interruption of the brain network organization, being
associated with patient’s cognitive performance.
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• The second hypothesis affirms that the use of HBI-MEG
(Magnetencephalography) signatures will enhance the prediction of
progression of AD.

Therefore, based on the clinical evidences linking cognition and
cardiovascular health in elderly individuals, we expect that an HBI-
based approach will uncover more reliable brain integrity markers
than those obtained by assessing the spontaneous oscillations observed
in resting state [1]. The expected outperformance will be tested by
means of employing a machine learning methodology over standard
resting state brain synchronization and HEC in a longitudinal dataset
including stable and progressive MCI.

Materials and Methods

Sample and disease characterization
We enrolled 53 patients diagnosed with amnestic-Mild Cognitive

Impairment (MCI) according to the National Institute on Aging-
Alzheimer Association (NIA-AA) criteria [15]. They also showed
significant hippocampal atrophy, which was evaluated by an
experienced radiologist. Additionally, we carried out a clinical 3-year
follow-up of the MCI subjects with the aim to determine if they either
remained as MCIs or fulfilled the criteria for probable Alzheimer's
disease according to the NIA-AA [16]. Based on their clinical
outcome, MCI participants were split into two subgroups for the
prediction analysis: the stable MCI group (sMCI; n=26), and the
progressive MCI group (pMCI; n=27). A sample of 26 age-matched
healthy control individuals was also selected with the same gender
distribution and educational level of the MCI patients. Control and
MCI patients differed in the Mini-mental State (MMSE) examination
score (Table 1). All participants were in good health and had neither
history of psychiatric, other neurological disorders nor cardiac disease
history. The local Ethics Committee approved the investigation.

Cognitive performance tests

Group Age Educati
on

MMSE PF SF TMTt TMTa

Control 72.8±4.
2

3.5 ±1.2 29.5
±0.6

14.8
±4.9

16.4
±3.9

72.2
±14.5

21.6
±3.5

sMCI 71.3±5.
4

2.9 ±1.3 27.7
±2.1

10.9
±5.1

13.5
±4.4

86.2
±7.4

19.8
±6.1

pMCI 72.3±3.
2

3.3±1.9 25.7±2.
4

9.2
±43.3

10.9
±2.6

82.1
±4.5

17.9
±7.8

Stat-p 0.032 0.035 0.001 0.003 0.001 0.004 0.002

Note: Education: 1 (basic) to 5 (high professional); MMSE, mini-mental state;
PF, phonetic fluency; SF, semantic fluency; TMTt and TMTa, trail making test
time and accuracy (respectively, measured in seconds), and corrected statistics.
sMCI: stable MCI; pMCI: progressive MCI

Table 1: Socio-demographic and cognitive test table.

MEG acquisition
Three-minute MEG resting-state recordings were acquired using an

Elekta Vectorview system with 306 sensors, inside a magnetically
shielded room (Vacuumschmelze GmbH, Hanau, Germany). To
determine the head position inside the MEG helmet, we digitalized the
head with a Fastrack Polhemus, and four coils attached to the forehead

and mastoids. Signals were sampled at 1 kHz with an online filter of
bandwidth 0.1–300 Hz. Maxfilter software (version 2.2, Elekta
Neuromag) was used to remove external noise with the Temporal
extension of the Signal Space Separation (tsss) method with
movement compensation [17]. The number of trials per subject is
given by the number of heart pulses, being statistically similar in
controls and patients (664 trials for controls and 587 for MCIs).

Estimation of the cardiac magnetic activity in the brain
The standard pre-processing of MEG/Electroencephalogram (EEG)

data entails the rejection of components originated in external brain
sources, such as eyes, muscles or the heart, to obtain a clean signal of
the magnetic field of the brain. However, we consider that the cardiac
magnetic component arriving at the brain far from being an artefact,
influences neuronal activity even in resting state. To estimate such
cardiac component, we applied Independent Component Analysis as
implemented in Fieldtrip to MEG segments of 4 seconds length
[18,19]. We manually selected the components of interest for this
study, namely the neuronal and cardiac components for each segment
and subject. Those components of neuronal origin were used for the
source reconstruction method, avoiding the mixture with influences
external to the brain. We individually checked the topography of the
cardiac components and the presence of heartbeat and T wave,
excluding those subjects with doubtful morphology. With this
procedure, we expand MEG as a technique to study the brain activity
to the Magneto-Encephalo-Cardiography (MEKG) to explore the
brain-heart interaction. ICA has been proved to be a robust method for
artifact detection and is nowadays a standard technique used in the
preprocessing of M/EEG data. In this study, we estimate the cardiac
magnetic dynamics from the raw data by means of ICA (named here
MEKG) instead of using a direct Electrocardiogram (EKG). The first
advantage of this procedure is to correlate both the brain and heart bio
magnetic activities since the standard EKG estimates only the electric
component of the heart electromagnetic field. Furthermore, with
MEKG we estimate the cardiac magnetic field as arrived at the brain.
As pointed by Winston and Rees, the possible distortion of the cardiac
electromagnetic field from the heart to the brain is nowadays unknown
[20]. In order to validate our procedure, we estimate the correlation
between the manually extracted components from ICA and the EKG
for a subset of participants (N=10). We obtain a 100% of coincidence
in the time location of heart pulses (1000 Hz sampling rate). This issue
is essential since we estimate heart evoked brain modulation
considering the pulse as a trigger. In addition, ICA algorithm supposes
that the propagation delays from the sources to the electrodes are
negligible. Respect to the dynamics, the correlation between both time
series is, on average, of 87%. We segmented the EKG in trials starting
50 ms before the QRS peaks and lasting until 50 ms before the next
QRS peak. We have 664 trials for controls and 587 for MCIs.

MEG source reconstruction and heart evoked brain
dynamics

After artifact rejection and the separation of the heart component,
the 4 seconds segments of purely neuronal activity were used to
estimate the sources in the standard spectral bands. Source locations
were defined in the subject’s space by using the cortical segmentation
produced by Freesurfer with a regular mesh of points with 1 cm
spacing, following a AAL atlas. We used a single shell model to solve
the forward model and source reconstruction was estimated with
Linearly Constrained Minimum Variance Beamformer for each
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spectral band [21,22]. Individually, spatial filter’s coefficients were
computed by averaging the covariance matrix over all trials. Dynamics
(time series) per segment and source localization were obtained from
these coefficients when applied to individual trials. To avoid mixing
MEG sensors with different sensitivities or resorting to scaling, only
magnetometers were used for source reconstruction. Note, however,
that gradiometer information is indirectly present as both
magnetometers and gradiometers were included in the tsss filtering.

Heart-brain interplay
Heart-Brain Interplay (HBI) is assessed with two different

approaches:

Heart Evoked brain Response (HER), where the time series of the
brain sources are referenced to the heartbeats [23].

Heart Evoked brain Connectivity (HEC) by means of computing
the time-frequency brain functional connectivity, with wavelet
coherence, referenced to the heart pulse [24,25].

HEC is defined to estimate the pairwise brain connectivity
referenced to the heart as well as to estimate the direct heart-brain
synchronization. In order to study the dynamics of the HBI, four
successive time windows of 100 ms length starting in the heart pulse
are defined. Basal reference where the cardiac wave decay and
therefore brain activity is free from electrical heart contractions is
defined in the interval (400,600) ms after the heart pulse [7,26]. The
HEC comparison between controls and MCI participants is done by
means of the topological measurements as degree, number of
connections per node (brain area) [27].

Statistical analysis and machine learning classification
We used nonparametric Mann–Whitney tests to check for

differences between controls and MCIs in HER and connectivity.
Further, we corrected by multiple comparisons by using a
nonparametric permutation approach, as follows [28]. First, the
original values were 5000 times randomly assigned to the original
groups (controls and MCIs) and a Mann–Whitney test was performed
for each randomization. Then, the U-value of the original dataset was
compared to the ones obtained with the randomized data. The final p-
value was defined as the proportion of permutations with U-values
higher than the one of the original data. In all the correlations, we
estimated the normalized Pearson correlation coefficient. We
established a threshold of abs(R>0.5) in order to avoid statistical
correlation with a small slope for its risky interpretation. Statistical p-
values is thresholed to p<0.01 for all correlations showed in this work.

Additionally, we used a multivariate machine learning algorithm,
support vector machine (SVM), to classify stable and progressive MCI
[29]. The training phase (where the classifier was trained using group-
labeled data) learns from the wavelet coherence between brain sources
and heart dynamics from both sMCI and pMCI, and the accuracy is
estimated from the testing phase with unseen data to be classified. A
linear kernel was used to represent the data, reduce computational cost
and improve classification accuracy (i.e., the overall rate of correct
classification). An enhanced recursive feature procedure was
implemented to ensure that discrimination accuracy was not due to
overfitting and to select the best predictive features (brain areas) [30].
Finally, we used leave-one-out cross-validation to test classification
accuracy and whether the results were independent of the initial
training data [31].

Results

Heart evoked brain response disruption in MCI
Our results show that the Heart-Evoked Response (HER) is lower

in MCI participants than in controls (p<0.001, corrected) in three areas
of the left hemisphere: the frontal orbital cortex, the frontal pole and
the left caudate, in a time window 200 ms after the QRS peak,
corresponding to the T wave (Figure 1).

Figure 1: Heart evoked neuronal response alteration in MCI. Brain
areas where heart modulation of brain activity is interrupted in MCI
patients labelled as a) left frontal pole, b)Left insular cortex, and

The possible relationship between HER and the degree of cognitive
impairment as assessed by the MMSE score is studied. The MMSE
performance correlated with the HER (Figure 2) in the left
supracalcarine (r2=0.28) and precuneus cortices (r2=0.21) in the QRS
peak, and in the left superior parietal lobe (r2=0.31) and posterior
paracingulate gyrus (r2=0.09) 200 ms after the QRS peak. The decline
of the MMSE is correlated with lower HER showing that a reduction
of heart evoked brain response co-occurs with a cognitive deficit.

Figure 2: Heart evoked neuronal response and cognitive status in
MCI. Correlation between HER with cognitive status as measured by 
MMSE in MCI patients. Areas labelled as: a) left precuneus cortex, b) 
left paracingulate gyrus posterior, c) left supracalcarine cortex, and d) 
left superior parietal lobe.
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 c) Left frontal orbital cortex, and the scatter diagram of averages. 
Average of HER (and standard deviation) in MCI and controls in the 
corresponding areas.



The correlation between HER and cognitive performance, assessed 
with several neuropsychological test (see Figure legend), is studied in 
both MCIs and controls. Pearson correlation coefficients R (at the p-
corrected<0.01 statistical significance) are estimated and only 
considered those following a threshold of abs (R>0.5). Results show 
that HER is correlated with cognitive status in several areas belonging 
to  the  DMN ( Figure  3 )  as   follow:   In   controls,  immediate  recall  
performance correlate with the HER in left frontal pole (R=0.51), and 
left paracingulate gyrus posterior (R=0.54); phonetic fluency outcome 
correlated with HER in right superior parietal lobe (R=0.60), right 
cuneal cortex (R=0.52), and right precuneus (R=0.56); semantic 
fluency correlates with HER in right cuneal cortex (R=0.55) and trail 
making test time negatively correlates with HER in right cuneal cortex 
(R=-0.71). Regarding MCI participants, trail making test accuracy 
(measured in seconds) correlates with HER in right supramarginal 
gyrus (R=-0.60), Right Parietal Operculum cortex (R=-0.56), Left 
Supramarginal gyrus (R=-0.58) and Left Parietal Operculum cortex 
(R=-0.51). These results show that the lower HER and the reduced 
cognitive response in both populations.

Figure 3: Heart evoked neuronal response and cognitive 
performance. Areas in the DMN presenting a significant correlation 
between HER and the cognitive test in control subjects (green areas) 
and MCI patients (red areas). Labels for brain areas: a) left parietal 
operculum cortex, b) left and c) right superior parietal lobe, d) right 
cuneal cortex, e) right precuneus, f) right supramarginal gyrus, g) right 
parietal operculum cortex, h) left supramarginal gyrus and i) left 
parietal operculum cortex (symmetrical areas not shown). Labels for 
cognitive tests: pf, phonetic fluency; sf, semantic fluency; ir, 
immediate recall; tmtt and tmta, trail making test time and accuracy 
(measured in seconds).

Heart evoked brain networks
To know whether resting state brain networks are influenced by 

cardiac cycle is, per se, an important topic in neuroscience. On the 
other hand, variability of spontaneous fluctuations observed in resting 
state is a phenomenon that could be hindering its application as 
biomarker in clinical research. We test the hypothesis that HEC, brain 
coherence referenced to the heart pulse, is a more relevant biomarker 
than non-reference resting state networks to study MCI. To end this, 
we estimated the time-frequency brain functional connectivity using 
heart pulse as a reference (called HEC) and without reference (called 
the standard procedure in resting state functional connectivity), and 
then, we compared the degree (number of connections per node) of

MCI and control networks in HEC along the cardiac cycle (4
successive time windows of 100 ms length starting in the heart pulse
are defined) and the standard resting state network in the standard
spectral bands: Theta (4-8Hz), Alpha (8-12 Hz), Beta (20-30 Hz) and
Gamma (30-50 Hz).

The topological comparison of HEC in controls and MCI networks
is done by the number of connections statistically different in both
population networks, i.e., the count of the statistical pairwise
comparison of the networks |D|. This measure provides an estimation
of the number of pathological links (present or absent) in the MCI
networks along the cardiac cycle (for HEC) or in average (for non-
reference networks). Figure 4A shows the bar diagrams with |D|, the
number of pathological links, along the cardiac cycle and |D| for non-
reference networks, in dashed line. We observe that the highest
difference occurs in the heartbeat window and 200 ms later (two first
bars), especially in the Alpha and Beta bands in favor of MCI subjects.
There is accumulated evidence that resting state brain activity in MCI
subjects is hypersynchronized in these bands [13,32,33]. Regionally,
HEC differences between controls and MCIs in the alpha band in the
heartbeat window included a range of brain areas bilaterally. Namely,
they were the temporal and occipital fusiform cortex, the temporal
lobe, the insular cortex, the intracalcarine cortex, the precuneus and
the frontal orbital cortex in the left hemisphere, and the frontal pole,
medial and operculum cortex in the right one. In the second time
window (200 ms after the heartbeat), the areas affected were frontal
poles, right occipital fusiform gyrus, left insular cortex and left
intracalcarine cortex. Although we observed a hypersynchronization in
alpha and beta bands in MCIs, the connection between left insular
cortex and left frontal operculum cortex was missed in MCIs until 250
ms in both bands.

Figure 4: Heart modulation of brain network along cardiac cycle.
(A) Number of pathological links (the count of the statistical pairwise 
comparison of the networks) in spectral bands in 4-time windows of 
100 ms length after the heartbeat. Dashed line represents the number 
of pathological links without considering the cardiac events (i.e., brain 
activity not locked to heartbeats or non-reference resting state standard 
procedure). (B) Time variability of networks as a measure of the 
response of brain connectivity to heart beat for controls (blue bars) 
and MCI (yellow bars), and estimated as the standard deviation of the 
degree of the networks in the four consecutive time windows of the 
cardiac cycle in the typical spectral bands.

As we can see, the topological difference between both populations 
varies with time along cardiac cycle, being the period (0-200 ms) the
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most discriminative of MCI and control networks. The fluctuation
(time variability) of degree (grand average of the standard deviation of
degree in the four-time windows) in both MCI and Controls networks
in different spectral bands is summarized in Figure 4B. These results
show that HEC of the control group varies with cardiac cycle,
indicating that networks are responsive to the cardiac events by
showing a wide pattern of rhythms. Conversely, the dynamic of the
HEC in the MCI group was stiffer, changing less in all frequency
bands than that of the control one. It indicates that HEC in MCI are
less responsive to the cardiac events, showing an aberrant (practically
constant) pattern of networks.

In order to test whether the results could be reproduced by using
brain activity not locked to heartbeats (ignoring cardiac dynamics) we
designed a surrogate procedure obtained by randomizing the temporal
dependence of the cardiac pulse, by running the same analysis but
randomly sampling the HEC at intervals mimicking heartbeats (the
standard procedure in resting state studies). This comparison was
repeated 10.000 times in order to estimate the rate of coincidences.
The results of our simulations show that HEC are different from
resting state networks with less than 1/1000 coincidences (0.0007% of
cases). Resting state is a non-reference condition where the beginning
of the segments selected for analysis is typically chosen randomly.
Clearly, such strategy results in a wastage of relevant information
(dashed line in Figure 4A), as compared to selecting the segments
using the heartbeat as a trigger (bars diagram in Figure 4A). In
summary, heart-evoked functional connectivity differences between
controls and MCI varies during the cardiac cycle, showing a greater
modulation of pre-beat network topology in controls than in MCI
subjects.

Heart - Brain interplay predicts progression to AD
We used a multivariate machine learning technique (support vector

machine, SVM) to test whether HEC is an accurate predictor of the
progression of MCI individuals to AD. For this purpose, we estimated
the accuracy of SVM to classify these individuals as sMCI or pMCI
using HEC and compared it with that obtained using brain
connectivity without reference to heart dynamics. We used a recursive
feature elimination algorithm to choose the most relevant time
interval, spectral band and the strength (average of the weight of
functional connectivity) of brain areas in both the HEC and solely
brain synchronization. The subset of brain areas performing better was
later used in the classification. In this way, we not only prevented
overfitting but also ensured that the number of features used for
classification was the same in both cases. Selected features are: time
interval (200-400 ms) after the heartbeat (T wave) in beta band and the
following areas: right middle temporal gyrus, right frontal orbital
cortex, right frontal operculum cortex, right supracalcarine cortex,
right occipital fusiform gyrus, right intracalcarine cortex, right frontal
medial cortex, left intracalcarine cortex, left precuneous cortex, and
left frontal orbital cortex. In all these regions, the heart-evoked brain
synchronization-strength-was higher for the sMCI group than in pMCI
(p<0.001, corrected). Notably, the total classification accuracy was
greater when we used the HEC values (86.7% of accuracy) as
compared to the situation when we classified the subjects using the
brain-brain interaction only (74.5%). Regarding the classification
accuracy according to subgroups of MCI patients, we found a heart-
brain classification accuracy of 93.5% and 80% for stable and
progressive MCI, correspondingly. Whereas that the classification
accuracy was the 60% and 72% for stable and progressive MCI,
correspondingly when just considering the brain networks. Figure 5

shows prediction in classification accuracy for the progressive group
when the brain-heart interaction is taken into account as compared to
when only information from the brain-brain interaction is used.

Figure 5: Heart evoked connectivity as a biomarker for Alzheimer
disease. Classification accuracy (%) for stable and progressive MCI
groups for the beta band in a time window (200, 400 ms) after the
heartbeat and the corresponding classifiers brain areas where the heart
adulation has a role as a biomarker for progression to AD (as selected
by a recursive feature selection).

Discussion
We showed, in this work, that heart-evoked responses correlated

with cognitive performance and dementia status in different brain
regions including those belonging to the DMN. The heart and brain
dynamics interact not only in response to the heartbeat but along the
cardiac cycle. Considering the heartbeat as a temporal trigger to study
resting state, unveil interesting phenomena in brain dynamics. For
example, this continuous connection would be one of the factors
responsible for the richness of rhythms observed in brain activity and
the aberrant brain network found in pathology (Figure 4B).

Our results show, for the first time, that considering both heart and
brain dynamics simultaneously enriches the study when compared
with the cerebral activity alone. As shown in Figure 4A (dashed lines)
results are not reproduced using brain data not locked to heartbeats
(activity randomly sampled at intervals mimicking heart pulses) and
the average of resting state intervals supposes no additional
information. Additionally, based on machine learning results we show
that the prediction to progression to AD is higher from the heart-brain
interaction than from brain synchronization (Figure 5). It strongly
suggests the need to rethink the role of the heart in cognitive
neuroscience.

It is well known, that the visceral status influences stimuli
processing requiring, therefore, the integration of sensorial
information with autonomic control of the cardiovascular function. A
question derived from this assumption is to what extent cardiac and
brain malfunctioning appears simultaneously, and whether the former
relates to the latter in diseases traditionally considered as a purely
cerebral such as dementia [1,34]. Several studies have reported that
CVDs such as heart failure, hypertension, atrial fibrillation produce
cognitive decline, either transitory or chronic [35-38]. A direct
example of the influence of cardiac dynamics on brain activity is
cardiac variability. It has been shown that patients in the process of
AD showed lower cardiac variability and this lack of flexibility could
be ending-up in a more rigid dynamic of the DMN. Consequently,
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DMN could show a lower flexibility to desynchronize in the presence
of new stimuli, leading to errors in cognitive processing and daily
living activities.

Dementia is also characterized by a loss of subjectivity or self-
experience, whose relationship with the HER has been probed recently
with a MEG study [39]. The influence of cognition in the selfhood and
the autonomic system has been proposed although is still a topic that
should be studied more [40-42]. Dementia could be a proper platform
to study this relation, and the current work is the first to show the
reduction of the heart evoked neuronal dynamics and its correlate with
cognitive status as measured by MMSE test (Figure 2) in brain areas
previously reported with fMRI studies [43]. Therefore, our results
support the hypothesis that neuronal response to viscera activity is
disrupted in MCI patients essentially in regions associated with the
DMN which has been associated with the self-experience integrating
the body as a whole [44,45]. This heart-brain disruption can alter the
self-experience contributing to cognitive impairment in dementia.

The fact that HER phenomena are improving the classification
between pMCI and sMCI is providing a clinical implication of these
findings. As indicated by the results from the SVM technique, putting
the heart into it improves our ability to distinguish between both
groups as compared to using brain synchronization alone. In addition,
we found that sMCI individuals showed higher synchronization than
pMCIs in all the brain regions being more predictive of progression.
One plausible explanation is that sMCI subjects compensate cognitive
deficits by increasing the rate of synchronization of their brain
networks. Indeed, compensation is a common interpretation for the
higher activation/synchronization in MCI subjects as compared to
controls. However, such increased activity correlates with close-to-
random organization of the MCI network and inversely correlate with
performance on cognitive tests [14, 46]. Furthermore, using a
computational model, De Haan and colleagues demonstrated that
increased activation and synchronization is a trigger of the
pathological cascade in this disease [47]. Linked to this last idea, is the
other plausible interpretation of sMCI hypersynchronization as a sign
of functional network disruption. Hypersynchronization, can be
induced by the impaired excitatory/inhibitory balance as indicated in
animal models of the disease due to the toxicity of amyloid plaques to
inhibitory terminals [12, 48, 49]. The fact that MCI patients showed
hypersynchronization (and less variability across the QRS window) as
compared to the control group, reinforces this interpretation. However,
it is a counterintuitive finding that the sMCI group is the one showing
highest hypersynchronisation. We interpret it by arguing that the fast
converters, our pMCI group, showed less heart-evoked brain
synchronization because they were in a more advanced stage (i.e.,
closer to Alzheimer disease), thereby presenting a more disconnected
network as shown in AD patients [50]. In contrast, sMCI subjects are
at an earlier stage and therefore still able to demonstrate a higher
response to the heart dynamics. This idea was recently demonstrated
by Pusil et al [13]. They did two consecutive MEG scans to sMCI and
pMCI. At the second scan sMCI showed increased brain
synchronization in comparison to pMCI, when initially they were
showing a reverse pattern. This was indicating that pMCI were in a
more advanced stage (network breakdown), while sMCI were in a
more initial stage showing increased synchrony predicting conversion
to AD [14]. It has to be tested in humans, whether the reduction of this
brain response by anti-epileptic drugs could improve cognitive status
as already demonstrated in animal models [51]. However, an
important implication from our research could be how the
improvement of cardiac function, increased variability, could improve

as well the dynamics of brain activity by reducing the synchronization
cycle. In turn, this excessive response will decrease the normal cortical
representation of heart’s dynamics in MCI patients, which will also
produce a loss of subjectivity and self-experience, very common
alterations in dementia patients.

Conclusion
Some questions still remain unanswered. How this heart-brain

disruption affect the organization of the functional networks during
performance of a memory task or how different life-styles (physical
exercise, meditation or nutrition) can modulate this disrupted HER
activity.
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