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Introduction
Several electromagnetic (EM) phenomena have been declared as 

precursory, viz. observed prior to earthquakes. The stated precursory 
EM frequency range includes ultra-low frequencies (ULF) from 0.001 
to 1 Hz [1-7], low frequencies (LF) between 1 and 10 kHz [6,8-13], 
high frequencies (HF) between 40 and 60 MHz [6,8,14-17] and very 
high frequencies (VHF) up to 300 MHz [18]. A principal method for 
identifying pre-earthquake precursors is the direct observation of EM 
emissions from the lithosphere [5]. A significant alternative is the indirect 
detection of seismic effects that take place in a form of propagation 
anomaly due to existing transmitter signals [5]. The underlying idea is 
that the EM disturbances emerge from the hypocentre of earthquakes 
due to the tectonic effects that accompany their preparation phase 
[5]. This renders additional indirect seismic effects in the form of 
disturbances propagation generated by pre-existing transmitter signals 
in the atmosphere and ionosphere [5]. According to some investigators, 
the pre-existing transmitters are inside the earth's crust [6]. According 
to several publications [10,11,19], the transmitters are the dynamically 
unstable multi-cracks that are continuously generated and moved 
during the earthquake preparation process. It is this transmission that 
causes the rupture of inter-atomic (ionic) bonds on the surfaces of new 
micro-cracks and evokes intense surface-charge separation, making 
micro-cracks effective electric dipoles and efficient electromagnetic 
emitters prior to earthquakes. Note that these failure-induced crack-
based electromagnetic disturbances are observed not only in nature but 
also under controlled experimental conditions [9-11,20]. The variety, 
however, of the several electromagnetic precursors and the wide ranges 
of values of time delay between events and observed earthquakes 
[11,21] complicates the analysis and limits significantly the possibilities 
of prediction. Adding to this complexity, is the multitude of methods 

employed to detect the EM anomalies and the different viewpoints 
from which the problem is seen.

A framework shared by a number of analysis methods is founded on 
the long-memory trends of data sequences and specifically on evidence 
of fBm behavior [3-5,8-11,14]. Examples of methods on long-memory 
analysis of time series are the power law fit test in a transform domain 
[3,4,8-10,14,17,22], the Rescaled Range (R/S) Analysis [10,16,23] and 
the Detrended Fluctuation Analysis method (DFA) [10,16], among 
others. The outputs of these methods are not always in agreement, 
partly due to the difficulty of the problem at hand. Therefore, the task 
of combining two or more of the long-memory analysis methods to 
achieve better results arises naturally. In this paper, we attempt to 
combine the power law fit test in the wavelet domain, named hereafter 
power-law wavelet method, with the R/S method in order to improve 
the detection capability of a continuous EM radiation monitoring 
system.

Continuous monitoring of pre-earthquake EM emissions involves 
large data processing and real-time results delivery. This brings forth 
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the need for a method able to handle large data sets and perform fast 
computations that will work in conjunction with existing, state-of-
the-art long-memory analysis techniques. To this end, the feasibility 
of a supervised classification algorithm is explored, namely the SVM 
classifier [24], known for its simple theoretical foundation and powerful 
modeling capabilities. To our knowledge, this is the first time the SVM is 
used for the detection of precursory signs in pre-seismic EM radiation, 
although it has been proposed as a warning system for standard (ground 
vibration) seismic signals [25]. The SVM classifier’s role is twofold. 
First, it is used to verify the findings of the two long-memory analysis 
methods, i.e. the joint findings of the power law wavelet and R/S 
methods. Second, in a scenario where continuous monitoring of EM 
signals is required, the SVM can classify recorded EM signal segments 
into their prominent fBm parts and those not exhibiting such behavior 
much faster than the two long-memory analysis methods combined. 
In addition, it is of importance to determine if EM signals, categorized 
as prominent fBm or not by standard long-memory analysis methods, 
are also clearly separable in a high dimensional feature space, created 
naturally by the SVM methodology. 

The whole algorithm was tested on three significant earthquakes 
(i.e. larger than ML=5) which occurred at different locations and times 
in Greece. In general, EM radiation data at 3 kHz, 10 kHz, 41 MHz and 
46 MHz frequencies are continuously collected by a telemetric network 
which operates in Greece almost uninterruptedly [26]. In each of these 
signals, recorded by a station located on a 50 km radius around the 
corresponding epicenter and up to one month prior to the ensuing 
earthquake, a combination of the power law wavelet and R/S methods 
was applied on the EM time series in order to discover prominent fBm 
patterns. The output of the long-memory analysis methods was used to 
label the EM data as prominent fBm and not prominent fBm or non-
fBm in order to facilitate the design of a two-class SVM classifier.

The present paper reports a new method on the detection of 
prominent fBm state behavior of EM measurements. In the first step of 
the proposed method, the two main long-memory analytic techniques 
are described, namely the power-law wavelet method and the R/S 
analysis. A twofold scheme is presented, as an intersection between the 
above two long-memory analysis techniques, in order to detect specific, 
prominent, fBm signatures. In the second step, the combined scheme is 
used for training a SVM classifier. The SVM training and classification 
process is described, along with the selected signal features that are 
used to reduce the amount of data sent to the classifier. Next, the 
predictability and reproducibility of the SVM classifier in terms of 
discriminating between prominent fBm and not prominent fBm or 
non-fBm classes in a high dimensional feature space are analyzed. The 
performance of the SVM classification stage is highlighted and the 
close agreement with the long-memory analysis methods is verified. 
Concluding remarks are given at the end. 

Methods
The methods developed in this work are generally divided into the 

long-memory analysis methods and the classification methods. Initially, 
a combination of two long-memory analysis methods is employed 
on the EM data to detect anomalies prior to significant earthquake 
events. These two methods, namely the power-law wavelet and the R/S 
analysis methods, are described in the next subsections. The output 
of the R/S method is expressed in terms of the Hurst exponent (H), a 
mathematical quantity which can detect long-range dependencies in 
time-series [27,28]. 

After the two-method analysis has labeled the significant versus the 

insignificant signal segments, a SVM classifier is trained on a small part 
of the labelled data and tested on the remaining or newly incoming 
data. It is desirable for the SVM to quickly compute the training 
parameters and to be able to classify new data rapidly. Signal features 
are thus derived that reduce the data dimensions and, at the same time, 
attempt to capture the information that is critical for classification. The 
general SVM framework is described in the next subsections, along 
with an efficient features selection scheme for data reduction. 

Power-law Wavelet Fractal Analysis Method 

During the complex process of earthquake preparation, linkages 
between space and time produce characteristic fractal structures 
[3,4,6,10,16,18]. It is expected that these fractal structures affect signals 
rooted in the earthquake generation process. The power spectrum 
density (PSD), S(f) is probably the most commonly used technique 
to provide useful information about the inherent memory of the 
system [10]. Although the power spectrum is only the lowest order 
statistical measure of the deviations of the random density field from 
homogeneity, it directly reflects the physical scales of the processes that 
affect structure formation [10]. If the recorded time-series, A(ti), is a 
temporal fractal, then a power-law spectrum is expected, i.e., S(f)=α·f -b, 
where f is the frequency of the transform. In a ( )( ) ( )ffS loglog −
representation, the power spectrum is a straight line, with linear spectral 
slopeb. The spectral amplificationα quantifies the power of the spectral 
components following the power spectral density law. The spectral 
scaling exponentbis a measure of the strength of time correlations. 
In the case of 1<b<3, the time series profile is considered to be a 
temporal fractal associated with fBm. The goodness of the power-law 
fit to a time-series is represented by the Spearman’s linear correlation 
coefficient r[10]. Attention is paid to whether distinct changes in the 
scaling exponent emerge before or during any detected bursts. 

For the investigation the following steps were followed:

(i) The MHz EM signals were divided in segments (windows) of 
1024 samples. These segmentations were expected to reveal the fractal 
characteristics of the signals [10,16,17].

(ii) In each segment the PSD of the signal was calculated. For the 
PSD calculation, the CWT using the Morlet wavelet was employed.

(iii) In each segment the existence of a power-law S(f)=α·f -b was 
investigated. In the PSD calculation, the employed frequency f was the 
central frequency of the Fourier transform of the Morlet scale.

(iv) The least square method was applied to the ( )( ) ( )ffS loglog −  
linear representation. Successive representations were considered 
those that exhibited squares of the Spearman's correlation coefficient 
above 0.95, i.e., 95% confidence interval with r2>0.95.

Estimation of Hurst exponent through R/S analysis

Hurst exponent is a mathematical quantity which can detect long-
range dependencies in time-series [27,28]. It can estimate the temporal 
smoothness of time-series and can search if the related phenomenon is a 
temporal fractal [29]. Hurst exponent was conceptualized for hydrology 
[27,28]. It has been employed however in other research topics as 
well, for example, traffic traces [30], plasma turbulence [31], ULF 
geomagnetic fields [4,5], climatic dynamics [32], pre-epileptic seizures 
[29], astronomy and astrophysics [33] and economy [34]. H-values 
between 0.5 < H < 1 manifest long-term positive autocorrelation in 
time-series. This means that a high present value will be, possibly, 
followed by a high future value and this tendency will last for long 
future time-periods (persistency) [8,14,35,36]. H values between 0 <H< 
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0.5 indicate time-series with long-term switching between high and 
low values. Namely, a high present value will be, possibly, followed by 
a low future value, whereas the next future value will be high and this 
switching will last long, into future (anti-persistency) [8,14,35,36]. H= 
0.5 implies completely uncorrelated time-series.

Hurst exponents were estimated through the method of Rescaled 
Range (R/S) [29] or as frequently referred, R/S analysis. The R/S analysis 
was introduced by Hurst [27] and attempts to find patterns that might 
repeat in the future. The method employs two variables, the range, R, 
and the standard deviation, S, of the data. According to the R/S method, 
a natural record in time, ( ) ( ) ( ) ( )Nx,,x,x=NX ..21 is transformed into a 
new variable ( )Nn,y in a certain time period n ( )N,,=n ...1,2  from the 

average, ∑
N

=i
N nx

N
=x

1

)(1
, over a period of N time units [27]. ( )Nn,y  

is called accumulated departure of the natural record in time [27]. The 
transformation follows the formula: 

( ) ( )( )
1

n

N
i=

y n,N = x i x−∑                                                     (1) 

The rescaled range is calculated from (2) [23,27,29]:

( )
( )nS
nR=SR /                     (2) 

The range ( )nR in (2) is defined as the distance between the 
minimum and maximum value of ( )Nn,y  by 

  ( ) ( ) ( )Nn,yNn,y=nR nim
Nnl

max
Nnl ≤≤≤≤

−  .                (3)

The standard deviation ( )nS  in (2) is calculated by 

 ( ) ( )( )21
Nxnx

N
=nS −  .                   (4)

R/S is expected to show a power-law dependence on the bin size n 

( )
( )

HnC=
nS
nR

⋅                     (5)

where H is the Hurst exponent and C is a proportionality constant.

The log transformation of the last equation is a linear relation

( )
( ) ( ) ( )nH+c=
nS
nR logloglog ⋅






                   (6) 

from which, exponent H can be estimated as the slope of the best 
line fit.

SVM classification

The EM data processed by the long-memory analysis methods are 
labeled as prominent fBm or not in terms of the presence, or not, of 
successive (r2>0.95) fractal fBm structure and a Hurst exponent above 
a certain threshold value. Two-class segmentation thus arises, which 
can be elegantly handled by a supervised classifier. Among the several 
classifiers, the SVM classifier is selected for its simplicity and the fact 
that no prior information or assumptions on the treated EM data is 
required. In its most basic form, SVM attempts to separate already 
labelled data via a hyperplane into two regions (classes) such that the 
gap between them is maximized, i.e., the point of class A closest to the 
hyperplane and the point of class B closest to the hyperplane are as far 
apart as possible. The data can also be mapped onto another, higher 
dimensional, space via a kernel function in case they are not linearly 

separable in the existing space. 

The EM segments are typically of high length (e.g. 1024 samples 
each), which means that the SVM will have to process very long vectors 
during its training phase, i.e., during the derivation of the separating 
hyperplane. For this reason, it is wise to reduce the segments length 
by deriving features of much shorter length but of high information 
content. Typical features are found in a transform domain such as the 
Discrete Wavelet Transform (DWT). The DWT, used as a filterbank, is 
critically sampled meaning that its output is of the same length as its 
input signal and so there is no redundancy. It produces subband signals 
with adjustable frequency and time resolution. The actual filterbank 
scheme can be collapsed into two filtering operations [37], i.e.,

∑ −= −

k

ii kngkn ]2[ ][][ )1()( αα                   (7)

∑ −= −

k

ii knhknd ]2[ ][][ )1()( α                    (8)

where α(i)[n] and d(i)[n] are the nth coefficients of the approximation and 
detail vector, respectively, at level i. They are the outputs of the lowpass 
wavelet filter g and highpass wavelet filter h after downsampling by a 
factor of two. The addition of the approximation and detail signals at 
level i produces the approximation signal at level i-1. Starting with the 
0th level approximation signal as the original signal, a tree-like structure 
of the DWT filterbank is evident. The frequency bands of α(i) and d(i) 
span the lower half and upper half, respectively, of the frequency band 
of α(i-1) . Notice that as the frequency bandwidth is reduced in each level, 
we can downsample the signal thus reducing the number of samples. In 
contrast, the CWT does not employ downsampling after each scale is 
applied and the redundancy is higher. 

For our scheme we select a three-level tree structure for the DWT 
with the Haar wavelet as its basis function which is preferred for its great 
time localization capability. The jth EM data segment enters the DWT 
filterbank to produce the approximation signal vector at level 3, 3

jα . 
Based on the filterbank description above, the vectors 3

jα  correspond 
to a frequency band that spans the lower 1/8 of the EM spectrum. 
This is desirable since we are mostly interested in the low frequency 
content of the EM data sequence. Higher frequency information is 
incorporated with the use of statistical descriptors. More specifically, 
for each of the six sub-band signals 1 2 3 1 2, , , ,j j j j jd d d α α  and 3

jα  we 
derive the standard deviation as 2 3 2 3[           ]

j j j j j j

T
j σ σ σ σ σ σ= 1 1d d d α α α

σ
and the standard deviation of the correlation function as 

2 3 2 3[ corr    corr   corr   corr   corr   corr ]
j j j j j j

T
j = σ σ σ σ σ σ1 1d d d

corr
α α α

σ . Each 3
jα  

signal is further normalized to zero mean and standard deviation 
equal to one by subtracting the mean from each 3

jα  and dividing by 
its standard deviation. This last operation maps helps to improve the 
classifier performance. The final feature vector of the jth EM segment 
can be written as

3[     ]T T T T
j j j j=x corrα σ σ  .                    (9) 

The feature vectors x are built to be used during the training phase 
of the SVM classifier as well as during the testing phase. The criteria for 
separating these features into classes are analyzed next. 

Class separation via long-memory analysis methods

The SVM classification algorithm, being a supervised learning 
method, requires class-labelling of the segments or vectors that are 
used for initially training the classifier. Our goal is to find a reliable 
criterion to label the EM segments that are afterwards used for training 
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the SVM classifier. For our scenario we need two classes. Class I 
(prominent successive fBm class) consists of EM segments that are 
deemed as significant or of some earthquake precursory value. Class 
II (not prominent fBm or non-fBm class) consists of EM segments 
that are deemed as insignificant or of no earthquake precursory 
value. Apparently, Class II EM segments are the complement of 
Class I segments. The two long-memory analysis methods described 
previously, i.e. the powerlaw wavelet and R/S methods, are combined 
here in terms of their common output, the Hurst exponent, in order to 
establish a criterion for separating the EM segments into significant or 
insignificant entities. 

We first employ the powerlaw wavelet method as it is the standard 
method for detecting temporal fractals in data. For all the training EM 
segments processed, we search for the particular segments that show 
strong fractal behavior, given by spearman’s correlation coefficient r 
with values r2>0.95. A second screening is applied on the segments 
with r2>0.95 to find the ones with b exponent in the range 31 << b  
which indicates fBm behavior. The R/S method is then applied on the 
segments in order to further refine the fBm tracking process and the 
Hurst exponents are computed. As it is shown later in the results, the 
Hurst exponents of the segments with r2>0.95 and 31 << b  (successive 
fBm segments) are generally higher as compared to the Hurst 
exponents of the segments with r2>0.95 and 31 << b (non-successive 
fBm segments) or with (1,  3)b∉  (non-fBm segments). Under this 
observation, a minimum threshold operator can be applied on all the 
EM segments as a multiple of the mean Hurst exponent value M of the 
total of non-fBm and non- successive fBm segments in order to isolate 
the successive fractal fBm segments with high Hurst exponents. Hence, 
we define:

Class I segments as the successive fractal fBm segments (r2>0.95 
and 31 << b ) with H above the threshold. 

Class II segments as the successive fBm segments with H below 
the threshold and also all the remaining (cases of non-successive 
fBm segments viz., with r2>0.95 and 31 << b and cases of non-fbm 
segments, viz. with (1,  3)b∉ ). 

The aforementioned segments, along with their class annotation, 
are used as training data for the SVM classifier in order to derive its 
training parameters. The overall algorithmic procedure is presented in 
the form of a flowchart in Figure 1. 

In the testing phase, the SVM classifies the testing data according 
to the stored training parameters. For a specific kernel function 

( , ) ( ), ( )i j i jK ϕ ϕ=< >x x x x  and mapping φ(∙) of the feature vector x to 
a higher dimensional feature space, the decision process for classifying 
the testing data into Class I or Class II is given by ))(sgn( bxw +φT , 
with sgn(∙) the sign function and w, b part of the training parameters. 
The important point here is that once the training of the SVM is 

complete, i.e. the training parameters are derived, the decision process 
is very fast computationally. It is given by the sign of the inner product 
of two vectors, w and )(xφ , after having been added to the constant b. 
In comparison, the original method of identifying Class I segments by 
first applying the powerlaw wavelet method and then the R/S method 
incurs a much higher computational cost. 

Implementation and Results
The algorithm described above is implemented for the scenario 

of EM data monitoring, prior to earthquakes in Greece. By utilizing 
an extensive network of EM monitoring stations [26], we explore 
three major earthquakes (ML>5) in a time period starting one month 
before each earthquake occurrence. Each EM data sequence consists of 
emission readings corresponding to 41 MHz radiation with a sampling 
frequency of 1 Hz. This amounts to a sequence length of approximately 
2.6x106 samples for a 30-day recording. The EM segment size is set to 
1024 samples. In our implemented scenario, we assume that we are 
continuously searching for anomalies in the EM readings without 
knowing the time of occurrence of the earthquake peak event. Fractal 
analysis through the described algorithms is done on a regular basis, 
e.g., at the end of each monitored day. Real time processing is more 
difficult, as long-memory analysis methods operate on successive, fixed 
length segments (e.g. 1024 samples), advancing one sample ahead each 
time i.e. the sliding window step is one sample. With these parameters, 
the analysis captures very fine EM variations in time at the expense of 
high computational cost as any given fractal analysis window almost 
completely overlaps the preceding one. Given the same window 
length and step size, and once the SVM training is complete, the SVM 
classification task can be performed much more rapidly and real time 
processing is less computationally demanding.

The three EM recordings, corresponding to the three different 
earthquakes under investigation, are shown in Figure 2. The first 
investigated recording corresponds to a 30-day pre-seismic EM 
activity before the earthquake of magnitude 8.5=LM  occurring south 
of Crete island (34.35 °N 25.40 °E) on 01/07/2009 (or JD 182 2009 in 
Julian’s calendar format) at the depth of 30 km, captured by a station 
in Neapoli. During this 30-day activity, two additional earthquakes 
occurred prior to the main 8.5=LM  event in a 50 km radius near the 
Neapoli station. The first additional earthquake ( 0.5=LM ) occurred 
on 26/6/2009 (JD 177, 2009) at 36.53 °N 25.49 °E at the depth of 28 km. 
The other additional earthquake ( 4.5=LM ) occurred on 19/6/2009 
(JD 170, 2009) at 36.46 °N 28.31 °E at the depth of 42 km. The second 
investigated recording corresponds to a 30-day pre-seismic EM activity 
before the earthquake of magnitude 2.6=LM  occurring west of Crete 
island (35.50 °N 23.28 °E) on 12/10/2013 (or JD 285 2013 in Julian’s 
calendar format) the depth of 65 km, captured by a station in Neapoli. 
The third investigated recording corresponds to a 30-day pre-seismic 
EM activity before the earthquake of magnitude 3.6=LM  occurring 
north of Limnos island (40.29 °N 25.40 °E) on 24/05/2014 (or JD 144 
2014 in Julian’s calendar format) at the depth of 30 km, captured by a 
station in Mytilene island. 

Figure 3 presents the results from the powerlaw wavelet method 
for the sequences of Figure 2 leading to (a) the Crete earthquake of 
01/07/2009, (b) the Crete earthquake of 12/10/2013 and (c) the Limnos 
earthquake of 24/05/2014. Figure 3(a)  analyzes the same data as in 
[17] but with different analysis parameters. The blue points represent 
the case of successive fBm segments, i.e., the case with r2>0.95 and 

31 << b . The red points represent the case of non-successive fBm or 
non-fBm segments, i.e., the case with r2>0.95 and 31 << b , or with 

Estimation of b
via Power Law
Wavelet method

Class I

Class II

SVM
training

M (mean H)

1< b <3
(fBm)

(not fBm)

non-successive

successive

H via R/S
analysis

H via R/S
analysis

YES

NO

H> 110%
of M?

r2 < 0.95

r2 ≥ 0.95

b∉ (1,3)

Figure 1: Structure of the overall algorithm.
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(1,  3)b∉ .

It can be observed that all subplots present several segments with 
the square of the Spearman correlation coefficient above the critical 
value of 0.95, i.e., the fit to the power-law was excellent. This is a 
strong indicator of the fractal character of the underlying processes 
and structures [10,11]. It is important that the successive power-law 
beta-values were between 1 and 3. Power-law b-exponent values in the 
range 1.5 < b < 2 indicate well-established fractal fBm anti-persistency 
and values above 2 (b > 2) fBm persistency. The latter implies that the 
corresponding fluctuations are positively correlated. This suggests 
that the underlying dynamics are governed by a positive feedback 
mechanism and that external influences tend to lead the system out 
of equilibrium [6,10,16]. Hence, the system acquires a self-regulating 
character and, to a great extent, the property of irreversibility, one of 
the important components of prediction reliability [6,10,16]. Under 
this perspective, the high power-law beta-value parts of Figure 2 imply 
long-range temporal correlations, i.e., strong system memory. Thus, 
each value correlates not only to its most recent value but also to its 
long-term history in a scale-invariant, fractal manner [6,10,16]. The 
history of this system defines its future (non-Markovian behavior) 
[6,10,16]. From another viewpoint, the non-fBm parts ( 11 <<− b ) are 
associated with “flicker noise” - 1/f behavior which is a reflection of 
the fact that the final output of fracture is affected by many processes 
that act almost randomly on different time scales [3,4,6,10,16]. The 
above-mentioned fBm results are in good agreement with the relevant 
prediction based on the hypothesis that the evolution of the Earth’s 
crust towards the general failure may take place as a Self-Organized 
Critical (SOC) phenomenon in a seismological sense [3,4,6,10,16]. 
All these are compatible with the last stage of earthquake generation 
[3,4,6,10,16]. Moreover, the high b-exponent values are indicative of 

candidate precursory activities. Indeed, the background noise, as being 
qualitatively analogous to the fGn- 1,/1 ≅nf n  class, exhibits b-values 
between 0 and 1 [3,4,6,10,16]. On the contrary, electromagnetic 
precursory signals, being compatible with the fBm model, present 
b-values between 1 and 3 [3,4,6,10,16]. The latter fact indicates that 
the high value power-law beta parts of Figure 3 are compatible with 
a successive fBm model, which is consistent with the slip of two 
self-affine fractional Brownian surfaces during the generation of 
earthquakes [3,4,6,10,16]. Noticeable, is that the above behavior is 
differentiated within the investigated 30-day EM recordings probably 
due to the differences in the magnitude, depth and distance from the 
recording station, as well as due to different sensitivity [17] of the 
recording station in reference to the occurrence area of the investigated 
earthquakes.

An example of a feature vector used for SVM classification is shown 
in Figure 4. The original segment length is 1024 EM measurements, 
leading to a feature vector consisting of 128 samples of 3

jα , six samples 
of jσ and six samples of jcorrσ . This amounts to a total of 140 samples 
of the feature vector jx . The coefficients with index values 129 ≤ n ≤ 
140 are related to the high frequency information of the wavelets and 
since they are not normalized, appear higher in magnitude relative to 
the other feature coefficients. 

Figure 5 shows a randomly selected set of segments, assessed as 
successive fBm by the power-law wavelet method i.e. with r2>0.95 
and 31 << b . The R/S based Hurst exponents are shown against 
the segment index. The vertical axis starts at the minimum value, 

minH , of all the Hurst exponents of the dataset. Note, that this type of 
presentation ( minH -shift) waives the differences in the H-value range 
arising from the R/S analysis performed over different, one-month 
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Figure 2: Collected EM measurements for 30 days duration prior to: (a) the 
Crete earthquake of 01/07/2009, (b) Crete earthquake of 12/10/2013 and (c) 
Limnos earthquake of 24/05/2014. Each monitoring starts on day 1 and ends 
on day 30. On day 31 the main earthquake event occurred (not shown). Figure 
(a) is from [17]. Earthquake details are analyzed in the text.
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Figure 3: Results from the powerlaw wavelet method for the sequences of 
Figure 2 leading to (a) the Crete earthquake of 01/07/2009, (b) the Crete 
earthquake of 12/10/2013 and (c) the Limnos earthquake of 24/05/2014. Figure 
3(a) is analyzes the same data as in [17] but with different analysis parameters. 
The blue points represent the case of successive fBm segments, i.e., the case 
with r2>0.95 and 31 << b . The red points represent the case of non-successive 
fBm or non-fBm segments, i.e., the case with r2>0.95 and 31 << b , or with 

(1,  3)b∉ .
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or longer, observation epochs in the EM time-series of the same or 
different recording stations, viz., time-series analyzed prior to different 
earthquakes or/and recorded by different stations. For comparison, 
we compute the Hurst exponents via the R/S method for the segments 
that do not exhibit fractal behavior (r2>0.95) or exhibit fractal behavior 
but not of the fBm kind (r2>0.95 and (1,  3)b∉ ), shown in Figure 6. 
Because of their very large number, we pick a small sample of these, 
randomly spaced in time, and typically of size 1% of the total number 
and also compute their mean Hurst exponent, M. As it can be seen, 
the latter Hurst exponents of Figure 6 are lower when compared to the 
Hurst exponents of the successive fBm segments of Figure 5. According 
to section 2.4, a minimum threshold operator is applied on the Hurst 
exponents of successive fBm segments as a multiple of M. Figure 
7 shows the Hurst exponents of the segments declared as successive 
fBm by the powerlaw wavelet method with a threshold set at 110% of 
M. Class I segments are the ones above the threshold while Class II 

segments are the ones below the threshold. The latter ones are grouped 
together with Class II segments of the cases with r2>0.95 or with r2>0.95 
and (1,  3)b∉ , as the ones shown in Figure 6. These segments, along 
with their class annotation, are used as training data for the SVM 
classifier. 

The SVM classification results are presented and analyzed for each 
of the three earthquakes under investigation. The LIBSVM library [38] 
is employed in order to implement the SVM task. The EM measurement 
sequence of each earthquake is divided into training and testing 
data. The readings corresponding to the first five days of the 30-day 
monitoring process are used as training data for the computation of the 
SVM parameters. The remaining EM readings, corresponding to the 
next 25 days of monitoring, are allocated for testing and evaluating the 
SVM classifier. Table 1 describes the training and testing sets, in terms 
of number of segments, employed for each earthquake monitoring 
sequence. It is clear that the number of Class II segments is much 
higher than the number of Class I segments for all three cases. In order 
to have balanced training data, subsampling of the Class II segments 
in the time domain is employed such that the number of training 
segments of Class I and II is the same. For instance, the training set 
in the Crete 2009 recording is created by picking every 100th Class II 
segment in the time domain and all Class I segments, resulting in 9906 
segments for both classes. 

The SVM parameters set is fine-tuned on the testing data of the 
three earthquakes by attempting to maximize the overall accuracy of 
the classifier on the testing set, given by 

# of correctly classified segmentsOverall Accuracy  
# of segments

=  .    (10)

After a coarse grid parameter search, a SVM kernel function 
that classifies the testing data with high overall accuracy is found 
to be an inhomogeneous polynomial of degree four, given as 

4)(),( rK jiji += xxxx γ  with γ=1/140 and r=10. This kernel is used 
throughout the classification experiments. The individual class 
accuracy is given as

Accuracy rate for Class I (sensitivity), Class II (specificity) and 
overall accuracy rate corresponding to the entire 25 days period. The 
numbers in parentheses are the actual segment numbers that produce 
the percentage rates. 

# of correctly classified Class x segmentsAccuracy Class x  
# of Class x segments

=  .    (11)

The classification results are shown in Table 2. An overall accuracy 

Figure 4: Typical feature vector extracted from a randomly selected EM 
segment of 1024 samples. The first 128 coefficients are normalized to zero 
mean and unitary standard deviation.

Figure 5: Hurst exponents based on the R/S method for a random set of 
segments tagged as successive fBm by the powerlaw wavelet method (case 
r2>0.95 and 1<b<3).

Figure 6: Hurst exponents based on the R/S method for a random set of 
segments tagged as not successive fBm by the powerlaw wavelet method (for

2 0.95r ≤ and 31 << b , or for (1,  3)b∉ ).  These are Class II segments and 
their mean M is also plotted. Their values are generally lower than the ones of 
Figure 5.

Figure 7: Further class separation for the segments of Figure 5 based on 
the minimum threshold set at 110% of the mean M. Class I segments are the 
ones above the threshold. Class II segments are below the threshold and are 
grouped together with the Class II segments of Figure 6.
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rate of 90% or higher for all three monitoring sequences is attained. 
It can be observed that the SVM parameters set is fine-tuned towards 
higher accuracy in the classification of Class II segments rather than 
Class I segments, i.e., towards correctly identifying non-prominent 
segments rather than prominent segments. This also means that the 
particular SVM implementation is tailored towards minimizing the 
number of insignificant segments that are falsely declared as significant, 
i.e., the number of false alarms. This design choice also leads to high 
overall accuracy since the number of Class II segments is much higher 
than the number of Class I segments. Higher accuracy rates can be 
obtained for significant, Class I, segments at the expense of higher false 
alarm rates by selecting a different set of SVM parameters. Notice that 
since this is a binary classifier, the accuracy rate of Class I is identical 
to the sensitivity rate while the accuracy rate of Class II is identical to 
the specificity rate. 

The class-specific, daily performance of the SVM for the 25 testing 
days is shown in Figure 8 for each of the three earthquakes. As explained 
before, the SVM accuracy for Class II segments is generally higher than 
for Class I segments. The earthquake sequences of Crete 2009 and 
Limnos 2014 contain Class I segments in all 25 monitoring days. The 
majority of the days observed in both earthquake sequences exhibit 
Class I accuracy of 80% or higher. The Crete 2009 sequence shows 
more than 90% accuracy in Class II segments for most of the 25 days 
tested while for the earthquake sequences of Crete 2013 and Limnos 
2014, the same accuracy rate climbs above 95% in the majority of the 
testing days. The earthquake sequence of Crete 12/10/2013 presents a 
more peculiar case because the number of available Class I segments is 
very small, as seen in Table 1. According to Table 2, the actual number 
is only 97, compared to the 2.1x106 segments of Class II. Nevertheless, 
the accuracy for both classes is very high even though the two classes 
are not represented in a balanced way in the testing set. Among the 
three cases, the earthquake of Crete 12/10/2009 posed the greatest 
classification challenge, as the Hurst exponents of Classes I and II are 
the closest in magnitude among the three earthquake sequences. The 
examples of Figures 3 and 4 actually depict this behavior for random 
samples derived from this particular earthquake sequence. Again, Class 
I Hurst exponents are higher than Class II Hurst exponents albeit this 
difference is not as high as in the other two earthquake sequences for 
which the SVM task is easier, as shown in Table 2. Further illustration 
for the lower SVM performance of Crete 2009 case as compared to 

the other two is provided by the Receiver Operating Characteristic 
(ROC) curves of Figure 9, computed on the testing data of the 25-day 
period. The larger the Area Under The Curve (AUC) is, the better the 
classification performance is in comparison. The AUC for the sequence 
of Crete 2009 is 0.9319, for the sequence of Crete 2013 is 0.9996 and 
for the sequence of Limnos 2014 is 0.9961. The best performance is 
attained for the case of Crete 2013 for which the AUC is almost one, i.e. 
the maximum possible value occurring in the case of perfect, error-free 
classification.

A novel algorithm on the detection of pre-seismic EM radiation 
anomalies was presented that fuses temporal long-memory analysis 
methods with SVM classifiers. In the fractal analysis stage, two 
previously deployed long-memory analysis methods were combined 
to jointly detect fractal anomalies in EM readings. A SVM classifier 
was trained on a fraction of these readings and then employed to verify 
and reproduce the fractal analysis detection results on the remaining 
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Figure 8: Daily classification accuracy rates for a 25-day monitoring sequence 
leading to (upper) the Crete earthquake of 01/07/2009, (middle) the Crete 
earthquake of 12/10/2013 and (bottom) the Limnos earthquake of 24/05/2014. 
For the days that do not contain Class 1 segments, the corresponding bars 
appear empty.

Figure 9: ROC curves for the three earthquake classification tasks. The larger 
the area under the curve (AUC) is, the better the classification performance is 
in comparison. The AUC for Crete 2009 is 0.9319, for Crete 2013 is 0.9996 and 
for Limnos 2014 is 0.9961.

Recording Training Set
(number of segments)

Testing Set
(number of segments)

Class I Class II Class I Class II
Crete 2009 9906 9906 50794 2083606
Crete 2013 1817 1817 97 2134303
Limnos 2014 18007 18007 51559 2082841

Number of SVM training and testing segments for each class for all three 30-day 
earthquake monitoring periods. The training set corresponds to the first five days 
while the testing set to the remaining 25 days of each period. 

Table 1: Training and Testing Sets for SVM Classification.

Recording Accuracy Class I 
(sensitivity) %

Accuracy Class II 
(specificity) %

Overall Accuracy %

Crete 2009 83.9 
(42603/50794)

90.8 
(1879777/2083606)

90.1 
(1922380/2134400)

Crete 2013 100.0
 (97/97)

99.7 
(2128351/2134303)

99.7 
(2128448/2134400)

Limnos 2014 95.9 
(49449/51559) 

98.6 
(2054578/2082841)

98.6 
(2104027/2134400)

Table 2: SVM Classification Results.
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data. Results for the long-memory analysis methods and the SVM 
classification stage were presented for three earthquake monitoring 
sequences recorded at three different locations and time instances 
in Greece. It was shown that the EM data separation into prominent 
fBm and non-prominent fBm or non-fBm parts performed by the 
two long-memory analysis methods is also reproducible by the SVM 
classifier by operating on features of the original EM data in a higher 
dimensional space. The SVM accuracy attained was 90% or higher for 
all three tested scenarios even though the three cases are very different 
in the occurrence pattern of Class I segments. The small computational 
complexity of the SVM decision process allows for real-time operation 
of the SVM classifier once its training is complete. 

Conclusions
This paper constitutes an attempt of advanced analysis of EM 

signals collected prior to earthquakes in Greece. Three earthquakes, 
occurring at different locations and time instances, were selected as test 
cases to apply SVM classification techniques. The contribution of this 
work can be summarized as follows:

1.) The results of the analysis with power-law wavelet analysis 
and R/S method were presented. Significant pre-seismic segments were 
identified in all earthquakes by both long-memory analysis techniques 
and SVM methods. These segments were categorized as fBm profile.

2.) Results of the power-law wavelet analysis and R/S method 
were combined to identify the EM segments exhibiting high Hurst 
exponents and successive fBm profile. Several such segments were 
found in all three earthquake sequences under investigation.

3.) Results on SVM classification showed that the EM data 
separation into significant and insignificant parts performed by the 
two long-memory analysis methods is also reproducible by the SVM 
classifier by operating on reduced features of the original EM data. 
These features are of considerably smaller size as compared to the 
original data while the computational speed of the SVM allows for real-
time implementation. The SVM accuracy attained was 90% or higher 
for all three tested scenarios.
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