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Abstract
Substantial progress has been made in devising successful therapies against Human Immunodeficiency Virus 

(HIV) replication, and antiretroviral therapy (ART) can provide a sustained control of HIV replication. It is, however, 
associated with at best partial immune reconstitution, as well as lack of elimination of viral reservoirs. Both innate and 
adaptive immune cell compartments that suffer as a result of HIV replication, fail to recover completely under ART, 
hence, the need for lifelong therapy once infected. Novel therapeutic approaches are being tested at an encouraging 
rate and have the potential to improve the odds against the virus. Among them, immunotherapeutic approaches are 
one of the exciting areas and can be considered as adjunct to ART for improving immune competence. Cells of the 
innate immune system, including natural killer (NK) cells, gamma delta (γδ) T cells and natural killer T (NKT) cells have 
cytotoxic potential against viruses, and therapies including such effector cells will be useful. The fact that HIV infection 
results in a severe dysfunction in most of these effector subsets, warrants approaches that take this into consideration. 
One reason for the dysfunction of immune cells is the disruption of the common γ chain family of cytokines during HIV 
infection. These cytokines play vital role in regulating functional activities of such immune effector cells. Consequently, 
besides and along with cells, these cytokines including IL-2, IL-7, IL-15 and IL-21 have shown some promise against 
HIV infection. This review briefly summarizes the immune therapy options in HIV infection, with special focus on innate 
cells and cytokines.
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Introduction
HIV is one of the most challenging pathogen as there is still no 

cure or successful vaccine available, despite the unprecedented 
research efforts. Immune control of HIV involves both cellular and 
humoral responses. Besides the classical MHC restricted cellular 
response orchestrated by CD8 and CD4 T cells, several other “killer” 
cells play an important role. NK cells, γδ T cells and NKT cells are the 
main cells in this latter category. Numerous research articles describe 
importance of NK cells in controlling HIV, as well as their dysfunction 
during infection [1-5]. Clearly, NK cells are potent cytotoxic cells, and 
strategies for improving their function in HIV infected patients will 
be valuable. Another cellular subset with potential is NKT cell. These 
natural killer T cells are a subset of T lymphocytes that express NK cell 
markers, bridge innate and adaptive immune responses, and have potent 
immunoregulatory properties. A subset of NKT cells, termed invariant 
NKT cells (iNKT), express a highly restricted T cell receptor (TCR), 
and respond to CD1d-restricted lipid ligands. Studies have shown 
a role for these iNKT cells in controlling immune activation during 
HIV and SIV infections [6]. Recent advances in NKT ligand discovery 
pave way for use of NKT cell-specific agonists as immunotherapeutic 
adjuvants to vaccine or therapies [7]. γδ T cells also play a critical role 
in linking innate and acquired immunity. Various studies report a 
dysfunction in gamma delta T cells during HIV infection [8-10], and in 
vitro studies show a cytotoxic effect of these cells on HIV infected cells 
[10]. Approved drugs for stimulating this subset of killer lymphocytes 
are already being tried for cancer therapy and have potential against 
viral infections, including HIV.

A challenge to utilizing these effector cells as therapeutic option in 
HIV infection is their severe depletion, and/or dysfunction caused by 
the virus. Antiretroviral therapy, if started very early, will likely limit the 
damage and also results in partial restoration in effector cell function. 
The common γ chain cytokines with a potent stimulating effect on 
these cytotoxic cells have been used to partly improve their function. 
The fact that HIV infection causes a dysregulation in these cytokines 
means that exogenous supplementation will result in restoration of 
the cellular subsets affected by them. Studies in HIV patients, as well 

as rhesus macaque SIV model, point to a beneficial effect on effector 
or memory immune cell reconstitution using these cytokines [11,12]. 
A combination of ART and innate immune cell stimulation has the 
potential to be more effective against the virus.

Innate Immune Cells and HIV Infection
‘Classical’ T cells recognize antigenic peptides bound to major 

histocompatibility complex (MHC) molecules. Besides classical αβ 
T cell response, cytotoxic lymphoid cells of innate immune system 
are involved in HIV pathogenesis and control. These cytotoxic cells 
are adversely affected by virus infection and consequently, the host 
capacity for effective virus control goes down. 

NK cells are the most studied subset among these innate cytotoxic 
effectors. NK cells recognize target cells lacking self-MHC, and their 
function is positively or negatively regulated through a range of HLA-
specific and non-HLA-specific receptors. NK cells recognize HIV 
infected cells by both activating and inhibitory killer immunoglobulin-
like receptors (KIRs) [4,13]. Recently, it was shown that NK cells 
mediate direct antiviral immune pressure on HIV [13]. Researchers 
found that particular variants of HIV viral proteins are recognized by 
specific NK cell KIR genes, suggesting that HIV mutates in response 
to such NK-cell-mediated immune pressure. This is the first time such 
immune pressure on HIV evolution is reported to be exerted by cells 
of innate immune system. Excellent reviews on role of NK cells in HIV 
infection are available [5,14,15]. Functional defects in NK cells during 
HIV infection are also well documented [3,16-18]. An expansion of 
the functionally defective CD56-/CD16+ population of NK cells in 
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viremic patients was reported to be responsible for impaired function 
of NK cell population [3,19]. HIV infection is accompanied by an 
alteration in activating and inhibitory KIRs, and resulting defects in 
cyotoxic capacity of these cells [3]. Both NK cell loss and chronic NK 
cell activation occur as a result of HIV viremia [2], and ART has partial 
effect on NK cell restoration [14]. 

NKT cells express NK-like and T cell like recognition structures 
and respond to lipid antigens. A subset of them termed ‘invariant’ 
NKT, has a restricted T cell repertoire. 

iNKT cell frequency is significantly reduced among HIV-1 positive 
individuals [20], with a specific depletion of the CD4+ iNKT subset, 
compared to the CD4− subset. The iNKT subset displays functional 
impairment, even if the numbers are not severely depleted during HIV, 
where these cells exhibit reduced proliferation and IFNγ, TNFα, and 
IL-4 secretion in response to stimulation with iNKT ligand [6,21]. 
Antiretroviral therapy has a variable effect on restoration of iNKT 
numbers and function [22].

We reviewed recently the impact of HIV on γδ T cells and potential 
strategies for exploiting Vδ2+ gamma delta T cells in HIV disease [23]. 
These cells are present at relatively low frequency of 1-7% in normal 
human peripheral blood. These cells express the non-classical γδ T 
cell receptor (TCR), with majority of cells expressing variable Vδ2 
segment associated with Vγ9 segment [24], and are therefore, referred 
to as Vδ2 T cells for purpose of brevity. These Vδ2+ cells recognize 
phosphorylated nonpeptidic microbial metabolites like isopentenyl 
pyrophosphate (IPP) and aminobiphosphonates [25,26]. These 
compounds directly trigger T cells expressing the Vγ9Vδ2 TCR, 
without the need for antigen processing and presentation, allowing for 
a very rapid response to microbial immune challenge. HIV infection 
leads to major dysfunction, in both numbers and functions of these 
cells [27,28]. In HIV infected humans, these cells are severely depleted 
in peripheral blood. Since these cells don’t express the HIV receptor 
CD4 and hence, are not directly infected by the virus, their depletion 
mechanism has long been subject of research. Very recently, it was 
shown that HIV binds the CCR5 and α4β7 co-receptors present on 
these cells and signal through CCR5 to cause cell death [29], providing 
one explanation for their depletion during infection. ART has minimal 
effect on restoration of cell numbers or proliferative responsiveness of 
this subset [27].

Both NKT and γδ T cells share common features, such as expression 
of antigen receptors of limited diversity, lack of MHC restriction, 
expression of NK like receptors and rapid release of cytokines following 
stimulation. There are also shared cytokine signaling pathways among 
these innate cell types, e.g. all the innate cells described here have 
receptors for common γ chain cytokine family members, and respond 
to stimulation with these cytokines. 

Cytokine Effector Cell Activation and Therapeutic 
Potential

Antiretroviral therapy has been very successful in controlling 
virus replication, resulting in near normal life spans for continuously 
treated patients. However, the deleterious impact of HIV infection on 
immune cells is profound and despite prolonged ART, virus-specific 
and innate immune cells are not fully restored. Additionally, ART does 
not tackle the latent virus reservoir. Other interventions to improve 
immune responsiveness of these effector cells are being explored as a 
result. Immunotherapy with common γ chain cytokines is a promising 
approach in this direction. These cytokines, viz. IL-2, IL-7, IL-15 and 
IL-21 are main regulators of T cell homeostasis, and hence, are good 
immunotherapeutic candidates. During HIV infection, disruption of 
signaling pathways of these cytokines results in a deleterious effect on 
immune cell function [30]. Down-regulation of common γ(c) subunit 
was shown to occur during SIV infection of macaques [31], and could be 
related to inhibited immune cell functions. Thus, using these cytokines 
as adjunct to ART is likely to promote immune reconstitution in HIV 
infected patients. 

IL-2 therapy has been extensively tested in multiple clinical trials, 
but no clinical benefit of this cytokine on HIV disease was found. IL-7, 
IL-15 and IL-21 have showed some promise, and are under investigation. 
Some selected clinical trials testing these cytokines in HIV infection are 
presented in table 1. For most of the cytokines, clinical trials are not 
concluded/not done, however, data from laboratory research using in 
vitro systems or animal models has been relatively promising. 

IL-2 therapy in HIV infected individuals resulted in peripheral 
expansion of naive and memory CD4 T cells [32]. Data from clinical 
trials show some immune restorative effect of IL-2 on CD4 T cells; 
however, no effect on CD8 T cells or any clinical benefits were observed 
[11,33]. IL-2 therapy, as an adjunct to vaccines, has been tested in 
animal models like SIV infection of rhesus macaques, and resulted in 
both increase in anti-viral immunity and slower disease progression 
[11,34]. Another study testing the effect of IL-2 adjunct therapy with 
antiretroviral treatment in HIV infection [35], found that both NK and 
NKT cells expanded during IL-2 treatment. The functional response of 
NKT cells was not boosted, whereas NK cell showed expansion of the 
CD56dim effector subset and enhanced IFNγ production.

IL-7 has effects on these immune cells, varying from activation 
to cell survival and maintenance. It promotes survival of CD56bright 
NK cells, and inhibits apoptosis by promoting BCl-2 production 
[36], and maintains NKT cells. Recently IL-7 was shown to induce 
IL-17 production in Vδ2 T cells [37]. Use of IL-7 in HIV infection 
is also tested. Whereas there was no effect observed on levels of viral 
replication in ART naive and ART treated SIV infected macaques [38], 
IL-7 therapy induced proliferation of CD4 and CD8 subsets [39,40]. 

Table 1: Clinical trials using common γ chain cytokines in HIV infection.

Clinical trial identifier (name) Cytokine Remarks
NCT00004978(ESPRIT) IL-2 in ART patients Improved absolute CD4 cell counts; no clinical benefit over ART group; serious side effects
NCT00013611(SILCAAT) IL-2 in ART patients Improved CD4 T cell counts; no clinical benefit over ART group; serious side effects

NCT00477321(Inspire) IL-7 in ART patients rhIL-7 at 20 ug/kg is well tolerated and resulted in CD4 and CD8 T cell increase and broadening of 
TCR diversity 

NCT01190111(Inspire 2) IL-7 Ongoing
NCT01241643(Inspire 3) IL-7 in immune non-responders Ongoing

NCT00115960 HIVgag DNA with IL-15 IL-15 tested as adjuvant to HIV gag vaccine. Minimal response to DNA vaccine alone and no 
augmentation with cytokine observed

NCT00775424 Pennvax-B with IL-15 IL-15 tested as adjuvant to an HIV pol gag env DNA vaccine; no improvement in IFNg or IL-2 
producing CD4 or CD8 T cells with IL-15
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Recombinant human IL-7 treatment in antiretroviral-treated HIV-
infected persons led to a dose-dependent CD4 T cell increase, as well as 
broadening of T cell receptor diversity in a phase I/II trial [41]. 

IL-15 therapy has shown more promise for improving anti-viral 
immunity, as well as memory response. IL-15 has a contrasting effect 
on HIV replication during acute versus chronic stages. Administration 
of IL-15 during acute SIV infection in ART naive animals resulted 
in significant increase in viral replication [42], whereas there was 
no impact on viral replication, when IL-15 was administered during 
chronic stage. IL-15 treatment, however, improved SIV specific CD8 
T cells, as well as NK cells in all stages [42]. Procedures using IL-15 to 
obtain large scale therapy grade NK cells are described [43]. Considering 
sometimes harmful or not potent beneficial effects of these therapies, 
it is suggested that cytokine therapy may be used as adjunct to vaccine 
candidates. The animal studies utilizing IL-15 co-administration 
with SIVgag vaccine shows variable results [38,44]; however, at least 
one study shows a clear benefit of IL-15 co-administration, resulting 
in more rapid reduction in SIV viral load and for improving vaccine 
induced immunity [44]. IL-15 can also potentially be used as immune 
modulator for improving CD8 T cell effector response in patients 
whose viral loads are effectively suppressed by ART. 

IL-21 also has stimulating effect on immune effector cells. IL-
21 was shown to regulate the differentiation of a human γδ T subset 
that supports antibody production by B cells [45,46]. NKT cells are 
known to be both producers of IL-21 and respond to IL-21 [47]. IL-
21 enhances NK and NKT cell granzyme B expression, and some 
inhibitory NK receptors, including Ly49C/I and CD94, as well as 
NKT cell cytokine production in response to anti-CD3/CD28 in vitro 
[48]. IL-21 has shown some beneficial effects against HIV infection. 
IL-21 administration in chronically SIV infected macaques showed 
benefit for cytotoxic and B cells [49]. Although no effect on plasma 
viral loads was observed, IL-21 therapy resulted in increase in virus 
specific IFNγ+CD107a+CD8 T cells, CD27+ memory B cells and NK 
cells. In a study of HIV elite controllers (individuals who control virus 
replication in absence of therapy), IL-21 producing HIV specific CD8 
T cells were higher in these rare individuals compared with other HIV 
infected groups [50], suggesting they play role in effective virus control. 
In fact, another study shows that IL-21+ HIV specific CD4 T cells 
modulate HIV-specific CD8 T cells function and contribute to effective 
virus control [51].

Use of these cytokines alone or in combinations for stimulation 
of innate cells to be used as adoptive transfer therapy can also be 
considered. While these cytokines stimulate NK, NKT and CD8 T 
cells, stimulating the γδ T cell subset will require additional antigens, 
to which these cells respond. Human Vδ2 subset of γδ T cell can be 
readily expanded using combinations of aminobisphosphonate drugs 
(FDA approved for treatment of osteoclastic bone resorption), and 
cytokines such as IL-2 or IL-15 [52]. Several preclinical and clinical 
studies utilizing such γδ T cell activation seek to activate direct 
cytotoxicity against tumor cells. In another approach, therapeutic 
tumor or viral antigen specific monoclonal antibodies can be used 
in combination with activated killer cells for killing through ADCC 
[53]. IL-21 therapy has been shown to improve Trastuzumab- and 
Cetuximab mediated ADCC by NK cells against squamous cell 
carcinoma [54]. For such strategies to succeed, however, the critical 
factors remain the frequency of γδ T cell in peripheral blood of HIV 
infected patients, and their responsiveness to stimulants. As discussed 
above, during HIV infection, there is significant impact on Vδ2 T 
cell phenotype and function, with significantly low frequency of this 
subtype present in infected individuals, along with poor responsiveness 

to natural gamma delta ligands like IPP [27]. We showed recently that 
aminobisphosphonate (Zoledronate), but not IPP, can partly restore 
Vδ2 T cell expansion from HIV infected patients, and these cells have 
functional capacity [55]. Whether in vivo activation will be sufficient 
to raise the effector activity remains to be tested in clinical studies. It is 
likely that for clinical studies, selection of patients will be required on 
the basis of their initial γδ frequency and phenotype, to test patients 
most likely to have benefit from such therapies. One area where 
such cellular activation may be useful is for designing combination 
therapeutic vaccines, involving γδ T cells activation, in conjunction 
with traditional vaccine antigens. This may have superior therapeutic 
effects, in comparison with the peptide-based vaccines alone.

Conclusion
Innate immune cells like NK, γδ T cells and NKT cells are potent 

cytotoxic effectors, and can inhibit HIV replication through direct or 
indirect cytolytic and noncytolytic pathways. These antiviral innate 
effector cells are depleted or dysregulated in HIV-infected individuals 
with chronic disease, but may partly recover after successful antiretroviral 
therapy. The use of common γ chain cytokines to stimulate these cells 
has shown some promise against HIV replication and reconstitution of 
some effector cell components. While IL-2 therapy alone is not likely 
to garner more support due to negative results in major clinical trials, 
there is optimism for use of IL-7, IL-15 and IL-21. Such approaches 
most likely will benefit individuals whose viral load are relatively low, 
in the absence of therapy, or are suppressed by antiretroviral drugs. 
Also, there is potential for these therapies, as an adjuvant to peptide 
vaccine. In future, it can be possible to tackle the latent reservoir in 
such patients, using combinations of these approaches. Our research 
is aimed at development of therapeutic strategies, combining innate 
cell stimulating compounds and antiretroviral drugs, to optimally 
stimulate immunity.
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