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Abstract

Roux-en-Y Gastric Bypass (RYGB), is an effective weight loss intervention for patients failing conventional
nonsurgical methods. Despite its popularity, only a subset of patients undergo RYGB due to its cumbersome nature.
Furthermore, patients may experience nutritional deficiencies or weight regain after RYGB. This review will delineate
the less known impact of RYGB on neurohormonal and gastrointestinal physiology involved in weight loss.
Understanding these alterations will contribute to the development of future novel investigations targeting viable
weight loss strategies.
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Introduction
RYGB is one of the most common bariatric approaches and leads to

marked improvements in inflammatory status, insulin resistance, and
several metabolically active hormones including leptin and
adiponectin [1-7]. These improvements are associated with lower
morbidity and mortality even in severely obese patients [8-17].

Therefore, the number of patients undergoing Roux-en-Y gastric
bypass (RYGB) surgery has increased by almost tenfold in the past 2
decades, with approximately 101,645 operations performed in 2011
alone [18,19]. However, although RYGB is effective for the vast
majority of patients, a small proportion of RYGB patients develop
serious nutritional complications, debilitating gastrointestinal (GI)
symptoms, and/or fail to reach their weight loss goals [20-25].

Thus, RYGB use decreased in recent years with the increasing
application of sleeve gastrectomy as an effective and less cumbersome
bariatric approach [26,27]. Furthermore, newer less invasive weight
loss interventions, such as intra-gastric balloons for instance, are
gaining popularity and may induce weight loss through delayed gastric
emptying and humoral changes [28].

As a result, it is important to review the influence of RYGB on
neurohormonal and gastrointestinal physiology in order to understand
their role in RYGB induced weight loss and ultimately guide future less
invasive weight management innovations that can mimic RYGB effect
effectively.

Methods
We performed a literature search in PubMed and Medline, using the

terms bariatric surgery, gastric bypass, obesity surgery, and Roux-en-Y.
These were searched as Medical Subject Headings “MeSH” terms and
also as text words.

These individual MeSH term search results and text word search
results were all combined using the Boolean operator “OR”. The
combined search was limited to English language using the language
filter. Human and animal studies were included.

This search result was then coupled with secondary search terms in
relation to our focus topics using the Boolean operator “AND”. The title
and abstracts of articles that resulted from this secondary search were
screened for relevance in relation to the focus topic. If found relevant,
their references were further reviewed to identify additional published
studies not indexed in PubMed.

The Roux-en-Y gastric bypass procedure
Four bariatric surgical procedures are commonly performed in the

United States and worldwide: 1) RYGB; 2) Adjustable Gastric Banding
(AGB); 3) Sleeve Gastrectomy (VSG), and 4) Bilopancreatic Diversion
(BPD) with or without duodenal switch (Figure 1).
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Figure 1: Four types of bariatric surgical procedures, A) RYGB; B)
Adjustable Gastric Banding (AGB); C) Sleeve Gastrectomy (SG) and
D-Bilopancreatic Diversion (BPD) with or (E) without duodenal
switch.

RYGB was introduced in 1967 as a treatment for obesity [29]. The
RYGB procedure involves creation of a proximal stomach pouch
approximately 30 ml in size. The intestinal jejunum is then transected
~30 cm below the Ligament of Treitz to form the Roux limb.

The distal jejunal segment then forms a gastroenterostomy, while
the proximal segment is connected to the small bowel ~100 cm below
the jejunal division. Despite a degree of recent standardization,
construction of gastric pouches, gastrojejunostomies or the Roux-en-Y
limbs all exhibit patient-specific variability [30].

Neurohormonal and Gastrointestinal Physiology Alterations after
Roux-en-Y gastric bypass (Figure 2)

Figure 2: Physiologic alterations to the gastrointestinal tract after
Roux-en-Y gastric bypass.

Feeding behavior and neuro-hormonal changes after RYGB
Functional Magnetic Resonance Imaging (MRI) and positron

emission topography (PET) imaging studies have highlighted some of
the key neural responses that occur following food intake in lean,
obese, and post RYGB patients. Compared to lean controls, pictorial
representations of food to obese subjects more intensely activate
regions of the frontal, dorsomedial prefrontal, precentral and
parahippocampal cortices.

These regions stimulate attention to (and memory of) food as well
as enhance food seeking behavior that is associated with weight gain
[31,32]. Conversely, dorsolateral prefrontal and insular brain centers

responsible for appetite control are suppressed in obesity, leading to
attenuated impulse control [31]. In addition, feeding in obese patients
fails to stimulate a ‘high reward’ response in mesolimbic pathways and
culminates in overeating [31,33]. Thus obese patients have a more
exaggerated memory of food-associated rewards and augmented food
seeking behavior. These neuronal changes lead to reduced appetite
control and reward during food ingestion that contributes to excessive
caloric intake.

After RYGB surgery, the activity of the mesolimbic reward pathway
and other reward centers is reduced in response to food pictures,
especially visual representations of high caloric density food. This is
associated with a decreased desire to eat [34,35]. Furthermore, RYGB
surgery patients have indistinguishable hunger reactions and brain
activity to food presentation from lean controls [36]. This indicates a
degree of RYGB-induced normalization of obesity-associated food
neural impulses.

Peptide YY (PYY) and Glucagon-like peptide-1 (GLP-1), produced
by the L cells in the GI tract, may play a critical role in this integrated
neural response. They have been shown to act on the central nervous
system to modulate appetite and feeding behavior [37-39]. A strong
body of evidence indicates that PYY and GLP-1 are suppressed in
obese patients and increase after RYGB surgery [40-44]. This increase
occurs in a dose dependent manner in relation to dietary calorie
content and is likely due to RYGB anatomical changes, as opposed to
the subsequent weight loss, as the increase occurs prior to significant
weight loss [45-47]. Although less well studied, motilin, a peptide
released from the upper intestine, stimulates phase III migrating motor
complex and hunger. Morbidly obese patients have higher motilin
levels compared to lean controls, and evidence suggests that these
levels normalize after gastric bypass surgery [48]. Ghrelin, an
orexigenic or appetite-stimulating hormone [49-51], is decreased
shortly after RYGB in some studies. However, ghrelin returns to pre-
operative levels a few months after surgery despite continued weight
loss [52], arguing against its role as a significant contributor to long-
term changes in appetite after RYGB surgery.

The summation of these findings suggests 1) that neural responses
to food are altered in obesity and appear to be recovered after RYGB
surgery, and 2) that this phenomenon may be related to the
neurohormonal effects of gastrointestinal incretin hormones. These
findings are critically important for future research in obesity
pharmacotherapy and emphasize the need further investigation in the
future.

Impact of RYGB on olfactory and taste perception and
relation to weight loss

Taste and smell are important modulators of feeding behavior and
appetite [53,54]. Taste sensation is decreased in obese compared to
lean controls, which may partly explain the inhibited reward during
food ingestion [55-57]. After RYGB, the acuity for sweet and sour
tastes is increased to levels that resemble lean subjects [57,58]. There is
also a rapid shift in sweet taste from pleasant to unpleasant after
surgery [59], likely due to altered post-surgical neural responses. These
changes potentially lead to improved reward response to food or high
caloric food aversion after surgery [34,60-62]. Olfactory sense and
discrimination is decreased in obese patients, possibly as result of
chronic high fat intake associated with obesity [57,63,64]. However,
although olfactory function seems to improve after Sleeve
Gastrectomy, RYGB does not lead to similar normalization,
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irrespective of BMI [57,65,66]. Although incompletely understood, this
intriguing finding may be due to more pronounced olfactory
dysfunction in RYGB surgery candidates at baseline and/or to
unidentified procedure-specific factors. This data suggest that taste
may play a role in obesity and weight loss after RYGB.

The oropharyngeal phase of swallowing and weight loss after
RYGB
The oropharyngeal phase is stereotyped in humans and starts with

solid food transportation to the back of the mouth after ingestion [67].
Then food is processed through mastication cycles in order to soften it
and form a bolus suitable for subsequent swallowing [67, 68]. A review
of studies evaluating mastication in obese compared to lean patients
leads to inconsistent findings. In some reports, obese patients
assembled food faster, with less chewing time (CT) and chewing cycles
(CC) [69,70]. However, two additional studies showed either increased
or unchanged CC and CT in obese patients [71,72]. This variation
could be due to sample size and study design. After RYGB surgery,
patients ingest smaller and more frequent meals [73,74] and solid food
mastication CC and CTs are increased [75]. Meal ingestion time is also
prolonged [76]. The prolonged eating rate and chewing seen in RYGB
can contribute to its positive impact on satiety [77]. It’s noteworthy
that improved mastication was thought to contribute to efficacy of
other obesity treatments such as aspiration therapy [77,78].

Gastric function after RYGB and impact on weight loss
Significant digestion of macronutrients occurs in the stomach. With

accelerated emptying, gastric retention is decreased after RYGB
[79-85]. In a recent study, using Scintigraphy and 3DCT, accelerated
gastric emptying was found to correlate with small volume of gastric
pouch and lower risk of weight regain after RYGB [86]. This
accelerated gastric emptying potenitally enhances the postprandial
insulin response seen after RYGB, and may be partially responsible for
the augmented release of GLP-1 and PYY [84, 85]. Reduction of
gastrojejunal anastomosis size was also associated with better weight
loss maintenance after RYGB, however underlying mechanisms are not
completely understood [87]. After bariatric surgery, baseline and peak
gastric acid secretion from the excluded stomach remnant is reduced,
with no change in fasting and post-prandial gastrin levels [88-92]. The
change gastric acid secretion may affect PYY levels after RYGB surgery
and subsequent weight loss [93]. Postprandial intrinsic factor and
pepsinogen secretion is also substantially decreased [91,94]. In
summary, the increased gastric emptying and decreased secretion are
important factors in post-RYGB weight loss and may account for the
augmented release of GLP-1 and PYY after RYGB.

Pancreatic exocrine function after RYGB and impact on
malabsorption and satiety

Fecal elastase-1 is reduced 8 months post-RYGB as opposed to
obese controls [95]. In parallel, patients who undergo RYGB exhibit
lower trypsin, chymotrypsin and amylase soon after surgery [96-98].
The decreased pancreatic exocrine function could be due to surgical
alteration and can be responsible for the activation of PYY and the
mild fatty acids malabsorption seen after RYGB [98]. This led to
techniques promoting malabsorption such as the EndoBarrier (GI
Dynamics, Lexington, MA, USA) and the incision less magnetic
anastomosis system (IMAS) [99,100]. Cholecystokinin (CCK) is
secreted from I cells in the duodenum and jejunum in the presence of

duodenal lipids. It affects gallbladder contraction and pancreatic
enzymes secretion. Furthermore, CCK was shown to induce satiety by
interacting with the vagus nerve sensory fibers and subsequently brain
satiety centers [101]. Fasting CCK levels are increased after RYGB
surgery [102]. CCK postprandial levels are either not changed or
increased, with a more rapid rise after meal ingestion, in RYGB
patients [103,104]. These CCK changes are likely due to the anatomical
alteration and rapid gastric transit leading to altered postprandial
levels and maybe responsible for the increased satiety after RYGB.

Bile acids and weight loss after RYGB
Plasma bile acids (BA) were suggested to affect genes implicated in

inflammation, obesity, and glucose metabolism [105]. Serum BA
increases gradually in rats, starting at week 14 post RYGB [106]. A
twofold increase was also shown in human studies after RYGB,
independent of weight loss [107,108]. This increase in serum BA
involves both fasting and peak postprandial levels [102]. Alternatively,
although fecal BA levels peak in the first days post RYGB in rats, they
normalize afterwards with a trend towards lower fecal BAs compared
to sham controls [106]. This was also seen in an ileal transposition rat
model which alters the small bowel anatomy in a similar fashion to
RYGB [109]. These findings were replicated in a small human study by
Odstrcil et al in which fecal BA absorption did not increase when
measured at 5 and 14 month post RYGB [110]. Following RYGB
surgery, the plasma Cholic acid: Chenodeoxycholic acid (CA: CDCA)
ratio in obese rats declines to levels observed in lean animals.
Decreased ratio of CA to CDCA derived BAs is also seen in stool,
suggesting a change in the bile acid pool post-RYGB surgery [106]. The
ratio is not significantly different between RYGB and nonobese,
weight- and age-matched human controls [102]. Markers of hepatic
BA biosynthesis and uptake do not increase after RYGB surgery,
suggesting that there is no increased hepatic production or decreased
absorption of BAs to explain the rise in serum levels. In contrast, gene
expression analysis indicates more BA reabsorption in the
biliopancreatic limb of the small intestine, highlighting the importance
of enterohepatic recycling to the increased serum BA levels [106,109].
Thus, in conclusion, serums BA are increased after RYGB with
improved CA: CDCA ratio.

Intestinal motility after RYGB
There is a paucity of data on intestinal motility after RYGB. Solid

food transit in the small bowel seems to be slower after RYGB while
colonic motility was similar up to 72 hours [84,111]. Another study
used a lactose breath test and showed accelerated orofecal transit
which could be due to faster gastric emptying and/or small bowel
bacterial overgrowth [81]. As opposed to solids, liquids were shown to
empty faster into the cecum. The faster liquid transit may contribute to
the early rise in PYY and GLP-1 after RYGB and potentially improve
satiety [85]. In summary, after RYGB, liquids small intestinal transit
seems to be faster while the opposite holds for solids. This discrepancy
between solids and liquids transit may contribute to improved satiety
and satiation after RYGB.

Impact of RYGB on the microbiome and relation to weight
loss

An expanding literature supports a role for the gut microbiome in
obesity and after RYGB weight loss. When obese-lean discordant twin
pairs were compared, gut microbiome of the obese group was less
diverse [112]. Further, transfer of gut microbiome from lean and obese
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subjects can induce metabolic phenotype in germ-free mice [113].
Most of the microbiome-focused studies in RYGB were of small sample
size with variable results as summarized in a recent review [114].
Monitoring bacterial genera post-RYGB showed less Firmicutes, such
as Lactobacillus, as well as Actinobacteria such as Bifidobacterium
decreased after RYGB. Conversely, Bacteroides and Alistipes, of the
phylum Bacteroidetes, significantly increased after RYGB [115-117].
Similar gut microbial changes were seen after non-surgical weight loss
[112,118]. Unlike in non-surgical weight loss, there was an increased
abundance of Proteobacteria, specifically Escherichia coli, after RYGB
[115-117,119-123]. Enterobacteriaceae and Pasteurellaceae were also
associated with weight loss after RYGB [122,123]. Finally, compared to
obese microbiota, RYGB gut microbiota transplant into germ-free mice
led to weight loss and improved glucose tolerance [117,124,125]. These
findings suggest that RYGB, compared to non-surgical weight loss,
produces a specific shift in the gut microbiota which may induce
weight loss.

Conclusion
RYGB induced surgical changes lead to significant alterations in

neural and gastrointestinal physiology as well as the microbiome.
These changes are likely to be collectively responsible for the observed
weight loss post RYGB and may guide innovative and viable future
weight loss interventions targeting these mechanisms in the future.
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