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Introduction
Environmental science can be considerate as the field of science 

that studies the interactions of the physical, chemical, and biological 
components of the environment and also the relationships and effects 
of these components with the organisms in the environment. In order to 
foresee what would happen if drastic events as extreme rainfall, extreme 
deforestation, chemical pollutions, etc occur, environmentalists work 
to understand the complex relationship between multiple disciplines 
including as biology, chemistry, and geology. This discipline can then 
address various issues as populations, weather, surface water, land, 
mountain, vegetation, economy, urbanization, natural hazards, mining, 
energy, water resources, pollution and sanitization, etc. Hence, it is 
divided into three main goals, which are to learn how the natural world 
works, to understand how we as humans interact with the environment, 
and also to determine how we affect the environment. The third goal 
of determining how humans affect the environment also includes 
finding ways to deal with these effects on the environment. All these 
categories utilize (geo) statistical approaches to resolve natural and 
human problems that have a spatial dimension. Actually, Geomatics 
is one of the important specialties because most of phenomena and 
matters studied in Geology need to be mapped in terms of simple 
illustration (reprography or presentation) or in terms of assessment 
(prediction or forecasting), management and allocation of the world's 
physical and/or human resources. In particular, assessing a variable is 
very delicate because it is a matter of interpolating that variable where 
no measurement has been conducted or establishing a correlation 
between data of different natures. For this purpose, several softwares 
have been developed including ArcGis and Golden Surfer, and are 
being widely used by thousands scientists worldwide for various 
aims. Interpolative and autocorrelation approaches are essential in 
number of geological and environmental investigations. Cheng et al. 
[1] set autocorrelation of road network data, Gerkman [2] modelled
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the spatial pattern econometrical parameters in the situation of small 
scale neighborhood, O’Kelly et al. [3] modelled the spatial interaction 
from Irish commuting data, Yates and Sanjeevi [4] modelled the 
assessment of the impact of vulnerability in the protection of critical 
infrastructure,  Singleton et al. [5] combined Geodemographics 
and spatial interaction as an integrated model for higher education, 
LeSage and Llano [6] modelled the spatial interaction with spatially 
structured origin and destination effects, Nazneen  [7] applied the 
ordered-response model to the analysis of urban land-use development 
intensity patterns, Bourgault [8] revisited Multi-Gaussian Kriging for 
the estimation of spatial distributions, Kolyukhin and Tveranger [9] 
statistically analyzed the fracture-length distribution sampled under 
the truncation and censoring effects, LeSage and Sheng [10] spatially 
examined the endogenous versus exogenous interaction, Mack et al. 
[11] analyzed the spatio-temporal industrial composition; Sun et al.
[12] mapped soil particle size fractions using compositional Kriging,
Cokriging and Additive Log-ratio Cokriging. More recently, Arétouyap 
et al. [13] used geostatistics to characterize aquifer in the Pan-African
context, Binita and Marshall Shepherd [13] to investigate temporal and
spatial assessment of climate change vulnerability; Chaney and  Rojas-
Guyler [14] to establish the geographic variability in adolescent drug
use and to correlate factors of use; Eidsvik [15] used a geostatistical
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Abstract
Geostatistics is an efficient and effective method to continuously assess the content, the spatio-temporal distribution 

and the correlation of a discretely sampled deposit. It begins with an exploratory analysis that evaluates the consistency 
and distribution of data through histograms and QQ plots, and then a structural analysis that evaluates data correlation 
and dependency through variogram and finally a predictive analysis using kriging. This predicting method is used in 
various geographical investigations: meteorology, demography, hydrology, orography, economy, and pollution, etc. Even 
when using related software, it is generally of the duty of the user to manually select the suitable variogram model. 
The main objectives of this paper were to highlight how the choice of a variogram model can affect the results of an 
interpolating predictive analysis and to show how a best-fitted model can be selected. The results, illustrated with an 
example, show that the choice of the variogram model inevitably influences the results of a kriging at both endpoints 
and amplitude of the range of the estimated values. However, the direction of variation of the interpolated values 
is independent of the variogram model: different variogram models (with the same characteristics) produce different 
thematic maps but, the areas of minimum and maximum values remain unchanged. Fortunately, the computation of 
some cross validation tests such as mean error (ME), mean square error (MSE), root mean square error (RMSE), 
average standard error (ASE) and root mean square standardized error (RMSSE) can help to ascertain the performance 
of the developed models.
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approach to model reservoir; Keumseok et al. [16] to build up spatial 
patterns of simulated obesity prevalence were compared with measures 
of low income and food accessibility; Melnikova et al. [17] reviewed 
the history matching through a smooth formulation of multiple-point 
statistics ; Mishra and Chaudhuri [18] to characterize spatio-temporal 
trends in vegetation greenness in Uttarakhand Himalayas; Zunkel 
[19] to establish a network of all 14 tornado sirens and examined the 
number of residents included and not included in that network. Most 
of mentioned modellings, geospatializations and interpolations are 
conducted thanks to ArcGis and Golden Surfer. The functioning of 
these softwares is based on interpolative techniques such as Minimum 
Curve, Inverse Distance, Spline functions, Trend Surface and Kriging 
[20]. Kriging is distinguished from all these techniques through its 
unbiased feature. It is so called BLUE (Best Linear Unbiaised Estimator). 
Thus, it is by far the most used method to that purpose in all domains 
of environmental sciences worldwide. Zamani and Mirabadi [21] used 
it to optimize the sensor orientation in railway wheel detector; Diodato 
to assess the spatial uncertainty of nitrates in the aquifers; Arétouyap et 
al. [22] used it to analyze the changes in the weather in Central Africa 
and also to study the distribution of physico-chemical parameters of 
groundwater in the area of Adamawa, Cameroon [23,24] to identify an 
excursion set; Hamel et al. [25] to perform scintillation maps; Nshagali et 
al. [26] to analyze the distribution of the pH and the iron concentration 
in the crystalline basement in equatorial region. The use of this method 
is growing with the development of new mining platforms across the 
New Industrialized Countries (Cameroon, Australia, South Africa, 
Mexico, Ethiopia, Brazil, Turkey, Philippines, etc.). This method so 
efficient, effective and popular with geoscientists has a very important 
preliminary step upon which depends the reliability of interpolation 
and prediction: this is the structural analysis focused on the variogram. 
This step is so important that for many versions of Golden Surfer, it is of 
the responsibility of the user to select the suitable model of variogram. 
That is certainly why Van Groenigen studied the influence of variogram 
parameters on optimal sampling schemes for mapping by kriging. The 
main objectives of this paper are (1) to highlight how the choice of a 
variogram model can affect the results of an interpolating predictive 
analysis and (2) to show how a best-fitted model can be selected.

Methods
Data and study area

In this experimental analysis, we used dataset of aquifer resistivity 
computed using the vertical electrical sounding conducted in the Pan-
African context of Adamawa-Cameroon [13]. This field campaign was 
carried out in order to characterize local aquifers and, the according 
dataset is presented in Table 1. 

Study area

The Panafrican region of Adamawa is located in the heart of Central 
Africa between 6°-8° North latitude and 11°-16° East longitude (Figure 
1). It extends over a length of about 410 km from West to East between 
Nigeria and the Central African Republic, for a total area of   67,827 
Km2. From March to October, the region receives an average rainfall 
of 1,540 mm per year. The temperature is moderate with an annual 
average around 25°C (Arétouyap et al. 2014). On the hydrological level, 
the Adamawa region is called “the water tower of Cameroon” because it 
feeds three of the four major watersheds of this country, namely the lake 
Chad Basin, the Niger basin in the North and the Sanaga Atlantic basin 
in the South. This region consists of two major geological domains:

- The former basement that includes highly metamorphosed 

VES N°T1 Long (°) Lat (°) Resistivity (Ωm)
1 14.00 7.25 3
2 13.55 7.26 4
3 13.68 7.57 8
4 13.97 7.52 10
5 13.46 7.35 13
6 13.57 7.31 20
7 14.24 7.16 22
8 13.86 7.24 25
9 14.11 7.19 26

10 14.05 6.54 28
11 14.02 7.31 40
12 14.20 7.28 46
13 13.87 7.24 47
14 14.27 6.56 48
15 13.21 7.33 53
16 13.33 7.34 61
17 14.50 7.05 62
18 13.08 7.37 100
19 14.56 6.94 104
20 13.27 7.29 110.8
21 13.53 7.05 112.9
22 13.11 7.04 114.1
23 13.56 7.43 134
24 13.40 7.32 137
25 13.03 6.18 157
26 14.43 6.90 175.7
27 14.24 6.52 177
28 14.24 6.53 188
29 12.94 7.12 200
30 13.56 7.43 207
31 13.68 7.17 212
32 14.01 7.31 216.1
33 13.94 7.55 221.5
34 13.95 7.02 270.4
35 13.25 7.22 341
36 13.31 7.29 362.1
37 13.36 7.22 387
38 13.35 7.18 392.6
39 13.26 7.27 408
40 13.05 6.13 410
41 13.84 7.52 422
42 13.26 7.27 446
43 13.31 7.29 472
44 13.98 7.26 479
45 13.93 7.55 502
46 12.57 6.59 565
47 14.26 6.54 608
48 13.08 7.54 640
49 13.90 7.06 811
50 13.97 7.09 825

Table 1: Resistivity of Pan-African aquifers that constitutes the database for the 
present study.

formations (migmatitic, gneiss and mica), and intrusive bodies 
composed of granites;

- The covering formations that include: red lateritic soils, 
sedimentary (sandstones and conglomerates) and volcanic (basalt 
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and trachyte) rocks. This region is the stool of a Panafrican granite-
gneissic basement, represented by granites, gneisses and Panafrican 
migmatites. Geological formations encountered are basalts, trachytes 
and trachyphonolites based mostly on concordant and discordant 
alkaline granites [27]. There are two major fractures slanted towards in 
two directions:

- The first oriented N30 °E, most common is that of the ‘‘Cameroon 
volcanic line’’, 

- The second oriented N70 °E, is the ‘‘Adamawa line’’ or ‘‘shear area 
of Adamawa’’.

The soils of the region are lateritic and classified into two types 
[28,29]: red soils derived from ancient metamorphic rocks and red soils 
formed on old basalts.

Variogram

Currently, kriging is the best interpolation technique because it is 
unbiased. Nevertheless, it requires data to be correlated and dependent. 
This structural analysis is conducted by means of variogram. The 
variogram is a tool that is used to describe the spatial continuity of a 
phenomenon [30]. The theoretical formulation of the variogram γ (h) 
uses the concept of variance (Var) applied to the difference between two 
observations z(x) and z(x+h) separated by a distance h (Eqn. 1).

[ ]1( ) var ( ) ( )
2

h z x z x hγ = − +                    (1)

In practice, only the experimental variogram γe(r) is calculated 
from observations using Eqn. 2. 

[ ]
( )1 2( ) ( ) ( )

2 ( ) 1
γ = − +∑

=

N h
h z x z x hi iN h i

                                              (2)

where γe(h) is the estimated value of the variogram for lag (h); N(h), the 
number of pairs of points separated by distance h; z(xi) and z(xi+h) are 
values of z at positions xi and xi+h, respectively. Ideally, a point of the 
experimental variogram is considered representative if N(h) ≥ 30. At 
these point values, a suitable theoretical variogram model is adjusted. 
The main current eligible models are nugget effect, linear, gravimetric, 
cubic, pentaspherical, spherical, exponential, power, Gaussian, Cauchy 
and logarithmic variograms. A model is admissible if any variance 
calculated from the model is positive [31]. The description of a 
variogram model is based on the quantification of multiple parameters 
identified in Figure 2. The range (length) a is the distance where the 
correlation between observations becomes zero. At this distance, the 
variogram reaches the sill (scale) ²σ  which is the sum of the nugget 
variance C0 and the partial sill (variance) C. The nugget effect derives 
from various sources such as measurement errors, existence of a 
microstructure smaller than the size of the sample and/or the presence 
of a microstructure with a range less than the distance between the two 
closest observations. It may be impossible to quantify the contribution 
of each source.

Kriging 

Kriging is a commonly used method of interpolation (prediction) 
for spatial data. The data are a set of observations of some variable(s) 
of interest, with some spatial correlation present. Usually, the result of 
kriging is the expected value and variance computed for every point 
within a region. Thus, it is a direct approach with a unique solution to 

 
Figure 1: Geological map of the study area with SEV locations and reference boreholes, from Maréchal [40] as amanded.
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an estimation problem and can be used to estimate the unknown value 
Z* of a variable at a point from the surrounding known values Zi using 
the following Eqn. 3.

* ( )
1

n
Z Zi i

i
λ= ∑

=
                                                                                       (3)

Where iλ
 represent the kriging weights. 

Obtaining a minimum variance of estimation
2

eσ  means to 
minimize the expression given by Eqn. 4.

[ ]* * *2 var var var 2cov ,Z Z Z Z Z Zeσ      = − = + −          
                 (4)

Substitution of the linear estimator can rewrite Eqn. 4 as Eqn. 5.

[ ]2 var cov , 2 cov ,
1 1 1

n n n
Z Z Z Z Zi j i j i i je

i j i
λ λ λσ    = + −∑ ∑ ∑   

= = =
       (5)

To ensure no bias for the linear estimator (Eqn. 5), the constriction: 

1
1

n

i
i

λ
=

=∑  should be integrated into the model. This constraint means 

that the local average of the observations is constant throughout the 
field. The minimization of a quadratic function with the presence of 
an equality constraint (Eqn. 6) is effected by the method of Lagrange 
which involves the Lagrange multiplier μ:

2

1
( ) 2 ( 1)

n

ie
i

L λ µ λσ
=

= + −∑                                                                   (6)

With the substitution of 2

eσ  the Eqn. 6 can be rewritten as Eqn. 7.

[ ] [ ]
1 1 1 1

( ) var cov , 2 cov , 2 ( 1)
n n n n

i j i j i i i
i j i i

L Z Z Z Z Zλ λ λ λ µ λ
= = = =

 = + − + − ∑∑ ∑ ∑     (7)

Eqn. 7 provides ordinary kriging when cancel all the partial 
derivatives with respect to each iλ  and compared to μ. The ordinary 
kriging system becomes: 

[ ]
1

cov , cov ,
n

j i j i
j

Z Z Z Zλ µ
=

  + = ∑  1...i n∀ =                           (8)

The minimum estimation variance of the system (kriging variance) 
σe

2 is determined by the substitution of kriging Eqn.s in Eqn. 8 to obtain 
the Eqn. 9.

[ ] [ ]2

1
var cov ,

n

i ik
i

Z Z Zλ µσ
=

= − −∑                                                    (9)

In practice, it is easier to use the matrix form of the kriging system 
(Eqn. 10):

1
1' 0 1

s sK kλ
µ

     
=     

     
                                                                               (10)

Where Ks is the (n × n) matrix of covariance between observations, 
ks, the (n × 1) matrix of covariance between the n observations and 
the point to be estimated, λ. The solution of this system is provided in 
matrix form as given by Eqn. 11.

K k
λ
µ

 
= 

 
                                                                                              (11)

Where 
1

,
1' 0 1

s sK k
K k   

= =   
   

                                                          (12)

And finally, 1K k
λ
µ

− 
= 

 
                                                                      (13)

Thus, Eqn. 13 is used to calculate the kriging weights λi needed to 
estimate a point defined by the linear estimator with Eqn. 3 [22,32].

Methodological step

To highlight the influence of the variogram model on the kriging 
results, we used a database made of aquifer resistivity determined in 
Adamawa-Cameroon region in order to investigate the productivity of 
local aquifers. Four different variogram models (logarithmic, Gaussian, 
exponential and spherical) with the same effect nugget (C0=200 Ω²m²), 
the same sill (σ²=5200 Ω²m²) and the same range (a=50 m) were used to 
interpolate the data by kriging. These variogram models are expressed 
by Eqns 14-17.

0Logarithmic model: ( ) ln( )h C C hγ = +                                     (14)

2

0Gaussian model: ( ) 1 exp 3 hh C C
a

γ
   = + − −        

                  (15)

0
3

0

C    0   

Spherical model : ( ) C (1.5 0.5   0     

     

if h

h hh C for h a
a a

C if h a

γ

=

  = + − < <  

 
 ≥

                  (16) 

0Exponential model : ( ) 1 exp 3 hh C C
a

γ
   = + − −      

                     (17)

Correct variogram model fitting

The variogram model is chosen from a set of mathematical 
functions that describe spatial relationships. The appropriate model 
is chosen by matching the shape of the curve of the experimental 
variogram to the shape of the curve of the mathematical function. This 
is clearly illustrated in the “Golden Surfer” software we used in this 
study. In fact, variogram is used in the interpolative kriging technique 
at its second step. This step is preceded by an exploratory data analysis 
and a prediction [33]. During the exploratory data analysis, data were 
checked consistency, outliers removed and statistical distribution 
identified. Normal data distribution is decided when the mean and 
the median are very similar. However, high skewness values indicate 

 
Figure 2: Experimental variogram.
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the existence of outliers, which are very high or low measured values 
comparing to the dataset. The outliers are caused by a bad measurement 
or a bad recording, and must be transformed when they exist. During 
the prediction phase, four variogram models were in order to select 
the best-fitted one. Predictive performances of the fitted models are 
checked on the basis of cross validation tests. The values of mean error 
(ME), mean square error (MSE), root mean square error (RMSE), 
average standard error (ASE) and root mean square standardized error 
(RMSSE) are estimated to ascertain the performance of the developed 
models. If the predictions are unbiased, the ME should be almost nil. 
But because of its weaknesses due to its dependence upon the scale of 
the data and to its indifference to the wrongness of variogram, ME is 
generally standardized by the MSE, being ideally zero.

Results
Using the logarithmic model, the estimated resistivity rages 

between 195 and 267 Ωm. The Gaussian and spherical models produce 
values ranged from 100 to 480 Ωm while the exponential model 
provides a range of 120-420 Ωm. In general, each model produced a 
different result. The difference may be in the endpoints of the range or 
its amplitude. These differences are summarized in Table 2 and shown 
in Figure 3.

Discussion
In the particular case of this study, spherical and Gaussian models 

estimated values in the same interval (100-480 Ωm). But in general, 
each variogram model provides distinct result. However, despite their 
observed differences, all thematic maps have the same variation trend. 
The gradient values are constant: the minimum and maximum values 
are almost in the same regions respectively from one map to another.  
These observations are conforming to results published by many other 
authors worldwide. Especially, Webster and Olivier [34] addressed 

error (ASE) and root mean square standardized error (RMSSE) are 
estimated to ascertain the performance of the developed models. If the 
predictions are unbiased, the ME should be almost nil. But because of 
its weaknesses due to its dependence upon the scale of the data and 
to its indifference to the wrongness of variogram, ME is generally 
standardized by the MSE, being ideally zero. However, RMSE and ASE 
should be calculated to indicate if the prediction errors were correctly 
assessed in the case where they are close. Otherwise, if the RMSE is 
less than the ASE (or RMSSE less than 1), then the variability of the 
predictions is overestimated; and if the RMSE is greater than the ASE 
(or RMSSE greater than 1), then the variability of the predictions is 
underestimated. Once the best model is selected, it is used to draw the 
thematic map that provides the spatial distribution of the parameter to 
be estimated. All these errors are expressed by Eqns (18)-(22) below 
[33,35]. 

( ) ( )*

1

1 N

i i
i

ME x xZ ZN =
= − ∑                                                                    (18)( ) ( )

( )
*

1

1
²

N i i

i i

x xZ ZMSE
N xσ=

 −
= ∑  

                                                    (19)

Logarithmic Exponential Gaussian/spherical
Minimum 195 120 100
Maximum 267 420 480
Magnitude 72 300 380

Table 2: Differences from analytical analysis between the four variogram models.
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Figure 3: Thematic maps of estimation performed using different variogram 
models (3a: Logarithmic model, 3b: Gaussian model, 3c: Spherical model, 3d: 
Exponential model). These maps are different each from the others.

ME RMSE ASE MSE RMSSE
Logarithmic 0.02 8.41 8.03 0.08 0.97
Gaussian 3.52 21.36 18.21 3.18 3.14
Spherical 5.24 23.21 20.07 7.01 3.20
Exponential 17.36 32.33 29.57 18.32 3.54

Table 3: Analytical characteristics of variogram models used to detect the best-
fitted one.

 
Figure 4: The four variogram models plotted together with the experimental 
one in order to highlight that the logarithmic model is best-fitted one.

several concerns related to the influence of the variogram model on the 
predictive investigation, and Chilès and Delfiner [31] modeled spatial 
uncertainty in Geostatistics. It is therefore evident that the quality and 
the reliability of an interpolation by kriging strongly depend on the 
structural analysis of field data, that is to say, the variogram model. 
Predictive performances of the fitted models are checked on the 
basis of cross validation tests. The values of mean error (ME), mean 
square error (MSE), root mean square error (RMSE), average standard 
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Where σ2(xi) is the Kriging variance for location xi, Z*(xi) and 
Z(xi) are the estimated and the measured values of the parameter at 
the location xi respectively. Table 3 shows that the logarithmic model is 
best-fitted one. And Figure 4, we see that this is the logarithmic model 
that accommodates the most with the experimental variogram. This 
study should have many applications and impacts on environmental 
and earth sciences. In fact, many environmental as rainfall and earth 
deposits and parameters are usually called to be predicted or estimated. 
However, one cannot carry out measurement continuously. The parameter 
to be estimated is measured discretely and then, to obtain the continuous 
information, kriging technique is used. Nowadays, this technique based on 
variogram is used by so many scientists in various fields as civil protection 
[21], meteorology [22,30], geochemistry [13,23,26,32,33]. If authors do 
not take into account the paramount impact of the variogram model in 
such investigations, the study will be sketchy and results untruthful. This 
explains the importance of the present paper. Many other studies have 
been carried out in order to highlight the delicateness of modelling and 
assessment. Nshagali et al. [26] bring up the effects of scale in spatial 
interaction models; Patuelli and Giuseppe Arbia [36-40] published an 
editorial on the advances in the statistical modelling of spatial interaction 
data. But the present paper tackles the issue of the selection of the suitable 
variogram model. In fact, interpolation soft-wares automatically propose a 
random linear or nugget model to the user (Figure 5). When the random 
linear or nugget model is automatically displayed, the user should select 
and “add” a model that is suitable for his dataset and then fit it.

Conclusion
Many scientific studies use geographical theory and methodology 

to resolve environmental, social and human problems. Some of 
these papers deal with issues of resources assessment, prediction 
and management. Such investigations are generally based on the 
interpolative techniques such as kriging. This very important technique 
for especially Geoscientist and other scientists in general includes a 
prior step namely structural analysis based on the variogram. This step 
is so important that it decides on the reliability and even the veracity of 
the kriging results. It is therefore necessary to well apply during the cross 
validation test in order to select the best-fitted variogram model before 

predictive analysis. In fact, the selection of a variogram model can be 
explicit or implicit (incorporated in software). This article illustrates 
how the use of an inappropriate variogram model can seriously distort 
the results of an evaluation or assessment or prediction survey. 
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