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Abstract

Objective: Evidence suggests that Endoplasmic Reticulum (ER) stress plays a causative role in the development
of atherosclerosis. Our previous studies have shown that ER stress signals through glycogen synthase kinase
(GSK)-3αβ to activate pro-atherogenic pathways. The purpose of this study is to determine if small molecule
inhibitors of ER stress-GSK3αβ signaling can promote the regression of existing atherosclerotic lesions.

Methods: Four-week-old female low density lipoprotein receptor deficient (LDLR-/-) mice were fed a high fat diet
for 16 weeks to establish atherosclerotic lesions. A subset of mice was sacrificed at this time to set the baseline for
atherosclerotic progression. The remaining mice were switched to stand chow diet (control) or a standard chow diet
supplemented with phenylbutyrate, a chemical chaperone that reduces ER stress, or valproate, a branch chain fatty
acid that selectively inhibits GSK3αβ. These mice were harvested at 30 weeks of age and atherosclerotic lesions
were quantified and characterized.

Results: Dietary supplementation with phenylbutyrate and valproate had no effect on body weight but did
significantly reduce plasma cholesterol levels. Atherosclerotic lesion areas at the aortic sinus and total
atherosclerotic volumes were significantly larger in the control group compared to the baseline group, indicating that
the lesions continued to grow despite the switch from a high fat diet to chow diet. The supplemented mice had
significantly smaller lesions than the control group, but not the baseline group. Both phenylbutyrate and valproate
supplementation reduced lesional macrophage/foam cell content and necrotic core area, and increased smooth
muscle cell content and collagen content, relative to control and baseline groups. These changes are indicative of
more stable atherosclerotic lesions.

Conclusion: Small molecule inhibitors of ER stress-GSK3αβ signaling do attenuate the growth of existing
atherosclerotic lesions and appear to increase lesion stability. It remains unclear whether these interventions can
actually promote atherosclerotic regression.

Keywords: Atherosclerosis; Mouse model; Plaque regression; Dietary
supplementation; ER stress

Introduction
Atherosclerosis is an inflammatory disease that involves the

accumulation of lipid engorged macrophages in the walls of medium
and large arteries [1]. Initially, atherosclerotic lesions grow
asymptomatically, however more advanced lesions can significantly
impede blood flow through the artery and cause unstable angina, stoke
or myocardial infarction. These cardiovascular diseases are the leading
cause of death in the world [2].

A great deal of research has been focused upon understanding the
underlying molecular and cellular mechanisms of atherogenesis. It is
now well established that atherosclerosis initiates at sites of endothelial
injury, usually in regions of turbulent blood flow, including vascular
bifurcations and inner curvatures [3]. Leukocytes and Low Density

Lipoprotein (LDL) particles infiltrate the intima through gaps in the
damaged endothelium. Intimal monocytes differentiate into
macrophages which endocytose oxided-LDL and efferocytose
apoptotic bodies thus becoming lipid laden foam cells. Macrophage/
foam cells secrete cytokines that perpetuate the inflammatory response
and promote vascular smooth muscle cell (VSMC) migration into the
intima. VSMCs secrete collagen which contributes to the development
of a fibrous cap over the growing lesion. If foam cell apoptosis exceeds
macrophage efferocytosis, an acellular necrotic region of cellular debris
(predominately cholesterol/lipids) accumulates within the lesion. This
necrotic core destabilizes the lesion making it prone to rupture. If the
lesion ruptures and the circulating blood contacts the lipid-rich
contents of the lesion, a thrombus will rapidly form which may occlude
blood flow through the vessel. Occlusion of a major artery will cause
myocardial infarction or stroke [1,4].

Many interventions have been identified that can slow or block the
progression of atherosclerosis, in pre-clinical model systems [5].
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Previous studies from our lab and others have shown that
cardiovascular risk factors can disrupt protein processing in the
endoplasmic reticulum (ER) of endothelial cells [6], VSMCs [7] and
macrophages [8]. ER stress can signal through glycogen synthase
kinase (GSK)3αβ to activate pro-atherogenic processes including
inflammation [9], lipid accumulation [8] and apoptosis [10].
Furthermore, inhibiting ER stress-GSK3αβ signaling can attenuate the
development and progression of atherosclerosis in LDL receptor
knockout (LDLR-/-) mice or apolipoprotein E knockout (ApoE-/-)
mice [11,12].

However, blocking the development of atherosclerotic lesions is not
currently a viable treatment option because patients typically present
with existing disease. Clinically relevant interventions must be effective
at stabilizing or regressing established lesions. Although it is clear that
atherosclerotic lesions can regress in humans and in animal models
[13,14] much less is known about the underlying mechanisms of
regression. Murine regression models require interventions that
drastically reduce circulating lipid levels that are attained through
dietary changes [15], genetic manipulation [16], or transplant [17].

In this study we investigate the potential of small molecule
interventions that block ER stress-GSK3αβ signaling on atherosclerotic
lesion regression using a high fat diet (HFD) fed LDLR-/- mouse
model. These mice are supplemented with the chemical chaperone, 4-
phenylbutyric acid, to attenuate ER stress or with the short chained
fatty acid, valproate to inhibit GSK3αβ. Lesion size and volume are
determined and the lesions are characterized for VSMC and
macrophage content.

Materials and Methods

Mouse models of atherosclerotic regression
All experimental procedures were pre-approved by the McMaster

University Animal Research Ethics Board. LDLR-/- mice were used as
the regression model (n=8/treatment group). These mice develop
atherosclerosis lesions when fed a high fat diet (HFD) but not when
fed a standard chow diet [18]. Mice were maintained on a 12-hour
light/dark cycle and had unlimited access to food and water. Four week
old, female LDLR-/- mice were fed a high fat diet (HFD) containing
21% fat and 0.2% cholesterol, with 42% calories from fat (Harlan
Teklad TD97363) or a standard control diet containing 18% protein
and 5% fat, with 18% calories from fat (TD92078). The HFD was
supplemented with sodium valproate (625 mg/kg HFD) or the
chemical chaperone phenylbutyrate (3.8 g/L in the drinking water).
The valproate and phenylbutyrate concentrations are based on
experience from previous studies [19,12].

Mice were fasted for 6 h prior to sacrifice. Blood was collected via
cardiac puncture and liver and perigonadal fat pad were removed. The
vasculature was flushed with 1X PBS buffer and perfusion fixed with
10% neutral buffer formalin. Hearts and aortas were collected and
fixed in formalin.

Characterization of atherosclerotic lesions
Hearts and aortas were embedded in paraffin and 5 μm sections of

the aortic sinus were collected onto slides, as previously described [20].
Sections were stained with Masson’s trichrome for atherosclerotic
lesion quantification. Images of the stained sections were collected
using Olympus BX41 microscope connected to a DP71 Olympus

camera. Lesion area staining was quantified using Image J 1.51v
software.

For immunofluorescent staining, sections were deparaffinized and
antigen retrieval performed by using antigen unmasking solution
(Vector Laboratories, H-3300). Sections were blocked in 10% goat
serum and then immunostained overnight with primary antibodies
against the macrophage marker CD107b/Mac3 1:50 (BD
Transductions, 550292), vascular smooth muscle cell (VSMC) marker
α-actin 1:200 (Santa Cruz, sc-32251), ER Stress marker KDEL 1:100
(ENZOL, ADI-SPA-827) or pro-apoptotic UPR marker C/EBP-
homologous protein (CHOP)(Santa Cruz sc-575). Sections were then
incubated with secondary antibodies Alexa Fluor 488 goat anti-mouse
IgG 1:250 (Thermofisher Scientific, A11001), Alexa Fluor 488 goat
anti-rabbit IgG 1:250 (Thermofisher Scientific A11008) or Alexa Fluor
488 goat anti-rat IgG 1:250 (Thermofisher Scientific, A11006) for 2 h,
and then stained with the DAPI (1:5000) (Invitrogen, D1306). Slides
were mounted with Fluoromount Aqueous Mounting Medium (Sigma,
F4680) and stored at 4°C in the dark. Images of the stained sections
were collected using an Olympus BX41 microscope connected to a
DP71 Olympus camera. Image J 1.51v software was used to quantify
immunofluorescent staining.

Determination of plasma lipids
Total plasma cholesterol and triglyceride levels were determined by

using the Infinity Cholesterol Kit (TR13421) and Infinity Triglyceride
Kit (TR22421), respectively. Assays were performed according to
manufacturer’s instructions.

Statistical Analysis
All statistical analysis was performed using GraphPad Prism 7

software. Data were analyzed by one or two-way ANOVA, followed by
the Bonferroni multiple comparison test between all groups. All error
bars on graphs represent the standard error of the mean (SEM). For all
experiments, a p value lower than 0.05 was considered statistically
significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Results

Effect of phenylbutyrate or valproate supplementation on
atherosclerosis

It has been established that supplementation with the chemical
chaperone phenylbutyrate, or the short branch chain fatty acid
valproate, can attenuate the progression of atherosclerosis in ApoE-/-
and HFD-fed LDLR-/- mice [12,19,21,22]. To determine if these
treatments could promote the regression of existing plaques, we have
previously measured the effects of a 4 week treatment with
phenylbutyrate or valproate on HFD-fed LDLR-/- mice with existing
atherosclerotic lesions [12]. Results of this experiment showed changes
in the morphology of the lesion that are consistent with plaque
stabilization; however, there was no reduction in lesion area or volume.
The purpose of these experiments was to determine if a longer (10
week) treatment with phenylbutyrate or valproate can promote
atherosclerotic lesion regression.

Four week old male and female LDLR-/- mice were fed a HFD for
16 weeks (Figure 1A). At 20 weeks of age, the baseline group was
sacrificed. The control group was switched to a standard chow diet and
other groups of mice were switched to the standard diet and treated

Citation: Patel S, De Jong M, Huang A, Shi Y, Werstuck GH (2019) Investigating the Effect of Phenylbutyrate and Valproate Supplementation on
Atherosclerotic Plaque Regression in a High Fat Diet Fed LDLR-/- Mouse Model. Atheroscler Open Access 4: 123. 

Page 2 of 10

Atheroscler Open Access, an open access journal Volume 4 • Issue 1 • 1000123



with phenylbutyrate (3.8 g/L in the drinking water), or control diet
containing valproate (625 mg/kg). Control, phenylbutyrate-treated and

valproate-treated groups were sacrificed after 10 additional weeks (30
weeks of age).

Figure 1: Atherosclerosis in HFD-fed LDLR-/- mice supplemented with phenylbutyrate or valproate. (A) Experimental design. (B)
Representative Mason’s trichrome stained sections of the aortic sinus from mice fed a HFD for 16 weeks (baseline), HFD-fed mice switched to
standard chow diet (control), or a chow diet plus phenylbutyrate (4PBA) or valproate (VPA). Atherosclerotic lesions are outlined in yellow. (C)
Quantification of the lesion area at the aortic sinus and ascending aorta. (D) Lesion Volume. n=6-8 mice/group, *p<0.05, **p<0.01, ***p<0.001.
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To investigate the effects of phenylbutyrate and valproate on
atherosclerosis, the aortic sinus was removed and processed, as
previously described [20]. Cross-sections of the aortic root were
stained with Masson’s trichrome stain (Figure 1B) and the
atherosclerotic lesion areas (Figure 1C) and volumes were quantified
(Figure 1D) [20].

Effect of supplementation on metabolic parameters
There were no significant differences in fasting blood glucose level,

body weight, liver weight, adipose weight between experimental
groups (Table 1). Hepatic triglyceride and cholesterol levels were lower
in the treatment groups compared to baseline (Figure 2A and 2B).
Control, phenylbutyrate- and valproate-treated mice had significantly
lower total plasma triglyceride and cholesterol levels compared to
baseline (Figure 2C and 2D). This difference is likely due to the switch
from HFD to standard diet. Both phenylbutyrate- and valproate-
treated mice had significantly lower total cholesterol levels compared
to control.

Figure 2: Hepatic and plasma lipid levels. Quantification of (A)
Hepatic triglyceride, (B) Total cholesterol levels and fasting plasma
(C) Triglyceride and (D) Total cholesterol levels from the indicated
treatment groups. n=5-7 mice in each group; *p<0.05, **p<0.01,
****p<0.0001.

Characterization of atherosclerotic lesions
Mason’s trichrome staining was used to assess necrotic core areas

and collagen content within the atherosclerotic lesions. There were
significantly larger acellular necrotic regions the atherosclerotic lesions
from control mice compared to baseline and supplemented mice
(Figure 3A and 3B). Collagen content, a marker for more stable
atherosclerotic plaques, was significantly elevated in the
phenylbutyrate and the valproate treated mice compared to both the
baseline and the controls (Figure 3C and 3D).

Lesional vascular smooth muscle cell and macrophage/foam cell
content was quantified in each of the experimental groups using
immunofluorescent staining with antibodies against smooth muscle α
actin and CD107b (Mac-3), respectively. Both phenylbutyrate and
valproate treatment resulted in significantly increased lesional VSMC

content relative to baseline and control groups (Figure 4). This is
consistent with the observed increase in plaque collagen (Figure 3C).

Figure 3: Necrotic core area in atherosclerotic plaques. (A)
Quantification of necrotic core area in atherosclerotic plaques at the
aortic sinus normalized to the lesion area. (B) Quantification of
collagen staining area at the aortic sinus normalized to the lesion
area. n=7-8 mice/group; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Control, phenylbutyrate and valproate groups had significantly
decreased lesional macrophage content compared to baseline,
indicative of an effect that can be attributed to the switch to a chow
diet (Figure 5). Phenylbutyrate treatment also significantly decreased
lesional macrophage content relative to control mice.

Effects of supplementation on lesion ER stress levels
Lesional ER stress was determined indirectly by performing

immunofluorescence staining in each of the experimental groups using
antibodies against KDEL – a marker of ER resident chaperone proteins
(GRP78/94) that are induced by ER stress, and an antibody against the
C/EBP-homologous protein (CHOP), a pro-apoptotic transcription
factor. There was no significant difference in KDEL levels in the
control, phenylbutyrate or valproate treatment groups (Figure 6). The
baseline group had significantly elevated KDEL levels compared to the
other groups. This likely indicates that HFD-feeding promotes ER
stress in LDLR-/- mice, an observation consistent with previous
reports [12]. CHOP staining was significantly lower in the
phenylbutyrate and valproate treated groups, relative to baseline and
control (Figure 7). This suggests that these treatments suppress the
pro-apoptotic UPR. This is consistent with the smaller necrotic cores
observed in the supplemented mice.

Baseline Control Phenylbutyrate Valproate

Blood Glucose
(mM) 10.56 ± 0.48 11.50 ± 0.40 10.49 ± 0.06 8.87 ± 0.42

Adipose
weight (g) 0.47 ± 0.07 0.42 ± 0.05 0.34 ± 0.08 0.49 ± 0.06

Liver weight
(g) 1.38 ± 0.06 1.21 ± 0.13 1.11 ± 0.06 1.18 ± 0.04

Body weight
(g) 26.78 ± 0.42 26.70 ± 0.65 25.53 ± 0.94 27.20 ± 0.88

Table 1: Metabolic parameters of 30 week old mice. Data represent the
mean ± SEM; n=7-10 mice/group.
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Figure 4: Vascular smooth muscle cell content in atherosclerotic plaques. (A) Representative sections of aortic sinus immunostained with an
antibody against α-actin (green) and co-stained with DAPI (nuclei stain, blue). Atherosclerotic lesions are outlined (yellow). (B)
Quantification of α-actin staining area normalized to the total lesion area. n=6-8 mice/group; *p<0.05, ***p<0.001, ****p<0.0001.
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Figure 5: Macrophage content in atherosclerotic plaques. (A) Representative sections of aortic sinus immunostained with an antibody against
CD107b/Mac3 (green) and co-stained with DAPI (nuclei stain, blue). Atherosclerotic lesions are outlined (yellow). (B) Quantification of
CD107b/Mac3 staining area normalized to the total lesion area. n=6-8 mice/group; **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 6: Adaptive unfolded protein response markers in the atherosclerotic plaques. (A) Representative sections of aortic sinus stained with
an anti-KDEL antibody (GRP78/94, green) and co-stained with DAPI (nuclei stain, blue). Atherosclerotic lesions are outlined (yellow). (B)
Quantification of KDEL staining area normalized to the total lesion area. n=6-8 mice/group; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 7: Pro-apoptotic unfolded protein response markers in the atherosclerotic plaques. (A) Representative sections of aortic sinus
immunostained with an antibody against CHOP (green) and co-stained merged with DAPI (nuclei stain, blue). Atherosclerotic lesions are
outlined (yellow). (B) Quantification of CHOP staining area normalized to the total lesion area. n=6-8 mice/group; *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.

Discussion and Conclusion
We have previously shown that the ER stress-GSK3αβ signaling

pathway promotes the development of atherosclerosis in LDLR-/- and
ApoE-/- mice [22-24]. In this study we set out to investigate the
potential ability of small molecules, phenylbutyrate and valproate, to
induce the regression of existing atherosclerotic plaques in a HFD-fed
LDLR-/- mouse model. Phenylbutyrate is a chemical chaperone that
reduces levels of ER stress [25] and valproate is a branch chain fatty
acid that is a selective inhibitor of GSK3αβ [26]. To investigate the
effects on atherosclerotic regression, a “dietary switch” strategy in

LDLR-/- mice was utilized. LDLR-/- mice only develop atherosclerosis
when fed a HFD and switching to a standard chow diet has been
reported to arrest plaque development [27,28]. In this study the
plaques were established in all mice by 16 weeks of HFD-feeding at
which time the baseline group were sacrificed. All other mice were
switched to a standard diet (control group), or a standard diet plus
phenylbutyrate (3.8 g/L in the drinking water), or a standard diet
containing valproate (625 mg/kg) for ten additional weeks (Figure 1A).

The switch to standard diet resulted in a significant drop in plasma
lipid levels and hepatic cholesterol levels, but not hepatic triglycerides.
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Sixteen weeks of HFD-feeding induced advanced atherosclerosis at the
aortic sinus and ascending aorta. Unexpectedly, the control group had
significantly larger lesions than the baseline group. This means that,
despite the shift to the standard diet and the normalization of plasma
lipid levels, the lesions continued to grow in the LDLR-/- control mice.
The growth of the lesions after the shift to chow diet makes it difficult
to distinguish regression from arrested progression, unless the final
lesions are smaller than those in the baseline group. The unanticipated
continuation of atherogenesis in the control mice after the switch to
standard chow is likely due to a localized, unresolved inflammatory
cycle in the microenvironment of the plaque [4]. This appears to result
in significantly more apoptosis and the development of a large acellular
necrotic core within the lesion. The enlarged necrotic core accounts for
all of the plaque growth during the 10 week standard diet feeding
period. In fact, both macrophage and smooth muscle cell content was
significantly lower in control mice compared to baseline.

Both phenylbutyrate and valproate treatments reduced
atherosclerotic lesion area, compared to control, but not baseline
(Figure 1D). The phenylbutyrate treatment reduced lesion area and
volume significantly in comparison to control. These results indicate
that the treatment with phenylbutyrate for 10 weeks can impede the
development of existing atherosclerosis in LDLR-/- mice. It is not clear
if it can promote atherosclerotic regression. The increase in lesional
VSMC, decrease in lesional macrophage, increase in lesional collagen
in both phenylbutyrate and valproate treated mice suggests that
phenylbutyrate and valproate treatment promote lesional stability. Our
results are consistent with a previous study which showed that
inducing ER stress in ApoE-/- mice caused a reduction in lesional
VSMCs and collagen content, and an increase in necrotic core
destabilization [29]. Furthermore, the increase in lesional VSMC and
collagen found in valproate-treated mice are consistent with reports
that have suggested a role of GSK3α/β in regulating VSMC migration
and survival, and plaque stability [30,31].

Together, these data add further evidence of the importance of the
ER stress-GSK3αβ in atherosclerosis. Additional research is required to
specifically define the potential role of this pathway in atherosclerotic
regression. These studies will be facilitated by the creation of new
regression models, the identification of more potent and more specific
GSK3αβ inhibitors and/or the development of inducible genetic GSK3
knockout mouse lines.
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