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Abstract

Malaria is a major cause of morbidity and mortality in the tropical and subtropical endemic countries worldwide.
This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available,
including the first-line treatment artemisinins. Thus, to fight this disease, there is an essential requirement to develop
new antimalarial drugs for malaria chemotherapy. Plasmodium falciparum, the causative agent of the most lethal
form of malaria in humans, cannot salvage preformed bases or nucleosides for pyrimidine synthesis and relies solely
on pyrimidine nucleotides synthesized through the de novo biosynthetic pathway. In contrast, the human host cells
have functionally operated both the salvage and de novo pathways. This mini review summarizes significant
progress on understanding the pyrimidine nucleotide metabolism and the functional enzymes in the human parasite
P. falciparum, which are different from the human host metabolic processes. Most recent information of the three-
dimensional crystal structures and the catalytic mechanisms of the de novo pyrimidine enzymes: dihydroorotate
dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their
inhibitors affecting these enzymatic activities are briefly reviewed in the context of their therapeutic potential against
malaria.
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Mini Review
Malaria, a major parasitic disease of humans, is caused by protozoa

of the genus Plasmodium, classified in the phylum Apicomplexan. The
disease afflicts 515 million clinical cases annually in 96 subtropical and
tropical endemic countries. The death toll is reported at 1.3 million
people each year, mostly young children in sub-Saharan Africa (90%)
[1] of the five Plasmodium species that infect humans, including P.
vivax, P. malariae, P. ovale, and P. knowlesi, P. falciparum is the most
dangerous parasite and responsible for the majority of deaths. Based
on the World Health Organization recommendation in 2001,
artemisinin-based combination therapies are now used as the first-line
drugs for treatment of P. falciparum malaria [2]. However by 2009,
resistance to the drug treatment has been reported [3]. In addition to
the lack of highly effective vector control and vaccines, the spread of
drug-resistant malaria accompanied by a worldwide resurgence of the
disease, it is necessary to develop quickly more effective novel
antimalarial drugs, possessing a different mechanism of action, for
malaria chemotherapy. This review highlights a better understanding
of biochemical differences between the parasite P. falciparum and
human metabolic processes, i.e., the pyrimidine nucleotide metabolic
pathway, which may provide new candidate drug targets for
intervention in the fight against this disease [4].

Nucleotide metabolism is one of the largest metabolic pathways,
providing the building blocks for DNA and RNA synthesis in human
cells. The nucleotides serve as key players in a wide range of cellular
functions, including energy transduction, signal transduction,
synthesis of biomolecules for carbohydrate and lipid metabolisms [5].
Purine and pyrimidine nucleotides are synthesized from de novo
biosynthetic pathways or supplied via salvage pathways, where

nucleobases, nucleosides and deoxynucleosides are recycled from
nutrients or from degraded DNA and RNA. In human cells, both the
de novo and salvage pathways are functioning at significant levels for
the purine and pyrimidine nucleotide requirements, although the
salvage pathways are more active than the de novo pathways [6]. This
is true also for bacteria, plant and the free-living nematode
Caenorhabditis elegans [7].

The de novo pyrimidine biosynthetic pathway is the most conserved
metabolic pathway, and the six sequential enzymatic steps starting
from bicarbonate ion (HCO3-), glutamine (Gln), and adenosine 5'-
triphosphate (ATP), providing uridine 5'-monophosphate (UMP)
(Figure 1, in solid line box), have remained intact throughout
evolution, although the primary structures of the enzymes responsible
for the de novo synthesis deviate significantly among prokaryotes,
parasitic protozoa, fungi, animals, and mammals including humans
[8,9]. Unlike human host cells, P. falciparum parasites have very
limited ability to salvage preformed pyrimidine bases and nucleosides
(e.g., uracil, uridine, thymidine, cytidine) from the host cell and
extracellular environment, but rely mostly on nucleotide synthesized
through the de novo pathway. All the enzymes required for de novo
synthesis of UMP, the first pyrimidine nucleotide metabolite acting as
the precursor for all pyrimidine nucleotides synthesis , including dCTP,
dTTP, CTP, TTP, and UTP, were detected in cell extracts from all
Plasmodium species so far examined [10]. The genes encoding each
enzyme in all steps of the de novo pathway were identified in the
parasite genome [11].

Progress towards understanding structures, catalytic mechanisms
and regulation of the mammalian and human enzymes for the de novo
pyrimidine pathway has been significant in recent years [5,9]. Some
key differences on the functioning organization of the enzymes, and
their genomes including the six enzymes of the pathway from
precursors HCO3-, Gln, and ATP to UMP synthesis warrants a closer
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look. The first three enzymes (carbamoyl phosphate synthetase, CPS II;
aspartate transcarbamoylase, ATC; dihydroorotase, DHO) of the
parasite were readily separated into three different molecular masses
by analytical gel filtration chromatography [12], which is consistent
with the presence of three discrete monofunctional enzymes. This is
similar to that found in another species of protozoa, Crithidia
fasciculata, and in many prokaryotic systems [12,13]. The
characteristics are different from the humans, wherein the CPS II, ATC
and DHO activities are carried on a 243-kDa multifunctional protein,
namely CAD [14]. The malarial DHO enzyme has been purified from
P. falciparum and its gene has been cloned, expressed and
characterized in detail by our groups [15]. The DHO is a Zn2+ enzyme
belonging to the amidohydrolase family, sharing characteristics of both
mammalian type I and eubacterial type II DHO by overall amino acid
sequence homology, structural characteristics, kinetic and inhibitor
properties [15,16]. At present, the malarial CPS II and ATC enzymes
are still poorly characterized and regulation of these pyrimidine
enzymes is unknown, in contrast to the human CAD enzyme [9].

Recent studies have mainly attended on dihydroorotate
dehydrogenase (DHOD), the fourth enzyme in the pathway,
particularly as a target for antimalarial agents [16-18]. The P.
falciparum DHOD has been characterized, and immunogold labelling
localized DHOD in the inner membrane of mitochondrion [18]. The
three-dimensional crystal structure of the parasite enzyme has been
elucidated and compared to the human DHOD structure [19,20].
Crystal structures of human and parasite DHOD identifies completely
different binding sites for the antiproliferating leflunomide inhibitor.
The overall structure is α/β-barrel, similarly to that of other type II
DHOD of eukaryotic origin. It contains flavin mononucleotide
coenzyme, ubiquinone binding site and active site for dihydroorotate
substrate. Furthermore, the de novo pathway is tightly coupled to the
mitochondrial electron transport system (Mt-ETS) through the DHOD
and its coenzyme Q (CoQ) (Figure 1). The MtETS are valuable targets
in malaria chemotherapy [21].

In our laboratory, we have characterized in detail the functional,
kinetic, and structural properties of orotate phosphoribosyltransferase
(OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC),
the fifth and sixth enzymes of the de novo pathway [22-24]. The OPRT
and OMPDC enzymes were purified directly from in vitro culture of P.
falciparum. The native enzymes obtained from the parasite are
organized in an α2β2 heterotetrameric quaternary structure having
two subunits each of OPRT and OMPDC [22]. We have also expressed
both genes in E. coli [23,24]. Co-expression recombinant P. falciparum
OPRT and OMPDC genes are also exhibited the in vitro α2β2 complex
formation [25,26]. Most recently, the parasites’ low complexity region
is involved in the protein-protein interaction during the α2β2
heterotetrameric formation of the malarial OPRT and OMPDC
enzymes, [(OPRT)2(OMPDC)2], as identified by means of a unique
insertion of low complexity amino acid sequence characterized by
single amino acid repeat, which was not seen in their homologous
enzymes from other organisms [27]. Furthermore, three-dimensional
crystal structures of the parasite OPRT and OMPDC have been
elucidated [28-32], and compared to the recently characterized human
OPRT and OMPDC structures [5], which are carried on a 52-kDa
bifunctional UMP synthase protein [8,9]. Thus, the inhibitors of
OMPDC have been designed and chemically synthesized for
therapeutic potential against malaria by using the structure-based
drug-design approach of the parasite enzyme [33].

Surprisingly, there is little information on the sequential enzymatic
steps after UMP synthesis before yielding dCTP, dTTP, CTP, TTP, and
UTP, which are the building nucleotide blocks for nucleic acid
synthesis in the parasite (Figure 1, broken line box). Genes are present
in the parasite genome but few enzymes have been studied to date.
Ribonucleotide reductase (RNR) of P. falciparum catalyzes the
production of deoxyribonucleotides from ribonucleotides, which is
tightly associated with the thioredoxin reductase enzyme [34]. P.
falciparum TMP kinase (TMPK), catalyzing the synthesis of dTTP and
TTP, is classified as type I enzyme by amino acid sequence but has high
efficiency in phosphorylation of azido-dTMP and dGMP as well as E.
coli type II TMPK, sharing characteristics of both types [35].
Additionally, CTP synthetase (CTPS) catalyzes the production of CTP
from UTP, is the only known enzyme for cytosine nucleotide de novo
synthesis in P. falciparum [36]. Typically, CTP reacts with
phosphocholine to form CDP-choline, which can combines with
diacylglycerol to form phosphatidylcholine (PC) and other
phospholipids by operating Kennedy pathway.

In human parasite P. falciparum, the de novo pyrimidine pathway is
known to be linked with the de novo folate biosynthesis via
thymidylate synthetase (TS) enzyme (Figure 1) [37]. The parasite TS is
a part of the bifunctional dihydrofolate reductase-thymidylate synthase
(DHFR-TS), a validated target for antifolate drugs used in malaria
chemotherapy. The three-dimensional crystal structure of the parasite
DHFR-TS enzyme and substrate channeling domains have been
resolved [38]. It is well recognized that the de novo folate pathway is
operating in the parasite, like in bacteria, whereas the human host is
incapable of de novo synthesis [37,38].

Furthermore, functional and kinetic properties of carbonic
anhydrase (CA) enzyme were studied in P. falciparum [39]. The
parasite CA catalyzes the interconversion of HCO3- and CO2, having
catalytic properties distinct from that of the human host CA isozyme I
and II. However, low amino acid sequence identity in the primary
structures and phylogenetic analyses of the P. falciparum CA is being
tapped in preclinical phase for drug development [40-42]. Importantly,
the CA supplies HCO3- as substrate for the first enzyme CPS II of the
de novo pyrimidine biosynthetic pathway, linking the parasite CA to
the pyrimidine pathway as shown in Figure 1 [42].

In conclusion, artemisinin-resistant parasites have already emerged
and spread in Southeast Asian region by 2014 [43,44]. This
phenomenon entails novel measures for malaria treatment and control.
Fortunately, one triazolopyrimidine inhibitor, namely DSM265,
targeting the parasite fourth enzyme DHOD of the de novo pyrimidine
pathway would prove promising as it progresses to clinical phase I
trials for drug development [45]. Moreover, as structure-based design
of antimalarial drug development continues to be tapped three-
dimensional crystal structure of the parasite enzyme, especially for the
sixth enzyme OMPDC [30], the possibility of modulating potential
toxicity through the pyrimidine pathway might have therapeutic
potential against malaria [46].
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Figure 1: The de novo pyrimidine nucleotide biosynthetic pathway
in P. falciparum. The pyrimidine nucleotides are important
metabolites for DNA, RNA, folate, and phosphatidylcholine (PC)
synthesis. The enzyme carbonic anhydrase (CA), providing HCO3-
as substrate for CPS II, is associated with the pyrimidine pathway.
The mitochondrial electron transport system (Mt-ETS) is linked to
the enzyme DHOD of the pathway, functioning as electron disposal.
The pyrimidine de novo pathway is closely linked to the folate
biosynthesis by thymidylate synthetase (TS). CTP converts to PC by
forming CDP-choline and then combining with diacylglycerol.
Abbreviations are as follows: CA, carbonic anhydrase; CPS II,
carbamoylphosphate synthetase II; ATC, aspartate
transcarbamoylase; DHO, dihydroorotase; DHOD, dihydroorotate
dehydrogenase; OPRT, orotate phosphoribosyltransferase; OMPDC,
orotidine 5'-monophosphate decarboxylase; NMPK, nucleoside
monophosphate kinase; RNR; ribonucleotide reductase; CTPS, CTP
synthetase; TS, thymidylate synthetase; TMPK, thymidylate kinase;
PC, phosphatidylcholine. The solid line box indicates the six
sequential enzymatic steps from Gln, ATP and HCO3- for UMP
synthesis. The broken line box shows the sequential steps after UMP
synthesis to provide dCTP, dTTP, CTP, TTP and UTP.
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