
Volume 2 • Issue 2 • 1000111
J Archit Eng Tech
ISSN: 2168-9717   JAET, an open access journal 

Open AccessResearch Article

Luévanos Rojas, J Archit Eng Tech 2013, 2:2
http://dx.doi.org/10.4172/2168-9717.1000111Architectural Engineering 

Technology

Keywords: Nonprismatic members; Parabolic haunches; Fixed-end 
moments; Carry-over factors; Stiffness factors

Introduction
One of the major concerns of structural engineering over the past 50 

years is to propose elastic methods dependable to satisfactorily model 
to the variable cross section members, such that it is having certainty in 
the determination of mechanical elements, strains and displacements 
that allow properly design this type of members. 

During the last century, between 1950 and 1960 were developed 
several design aids, as those presented by Guldan [1], and the most 
popular tables published by the Portland Cement Association (PCA) 
in 1958 “Handbook” [2], where stiffness constants and fixed-end 
moments of variable section members are presented because the 
limitations for extensive calculations at that time, in the PCA tables 
were used several hypotheses to simplify the problem, among the most 
important pondering the variation of the stiffness (linear or parabolic, 
according the case of geometry) in function of main moment of inertia 
in flexure, considering independent cross section, it was demonstrated 
as incorrect. Furthermore the shear deformations and the ratio of 
length-height of beam are neglected in the definition of stiffness factors, 
simplifications can lead to significant errors in determining stiffness 
factors [3].

Elastic formulation of stiffness for members of variable section 
was evolved over time, and after the publication of the PCA tables, the 
following works deserve special mention all based on beams theory: 
Just [4] was the first to propose a rigorous formulation for members 
of variable cross section of drawer type and “I” based on the classical 
theory of beams of Bernoulli-Euler for two-dimensional member 
without including axial deformations. Schreyer [5] proposed a more 
rigorous theory of beams for members varying linearly, which the 
hypothesis generalized by Kirchhoff were introduced to take account 
the shear deformations. Medwadowski [6] resolved the problem of 
flexure in beam of shear nonprismatic using the theory of variation 
calculus. Brown [7] presents a method which uses approximate 
interpolation functions consistent with beam elastic theory and the 
principle of virtual work to define the stiffness matrix of members of 
variable section.
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Abstract
This paper presents mechanical elements of rectangular nonprismatic members for symmetrical parabolic 

haunches subjected to a uniformly distributed load by through analytical models, these are: fixed-end moments, 
carry-over factors and stiffness factors. The properties of the rectangular cross section of member vary along its axis 
“x”, i.e., the width “b” is constant and the height “h” varies along the beam, this variation is parabolic type. Traditional 
methods for nonprismatic members to obtain the deflections used the Simpson’s rule, or any other technique to 
perform numerical integration, and the tables showing some authors are restricted to certain relationships. Also a 
comparison is made between the proposed models and tables that show some authors. Besides the effectiveness 
and accuracy of the developed models, a significant advantage is that fixed-end moments, carry-over factors and 
stiffness factors are calculated for any rectangular cross section of the beam using the mathematical formulas.

Matrices of elastic stiffness for two-dimensional and three-
dimensional members of variable section based on classical theory of 
beam by Euler-Bernoulli and flexibilities method taking into account 
the axial and shear deformations, and the cross section shape is found 
in Tena and Zaldo [8] and in the appendix B [9].

 In traditional methods used for the variable cross section members, 
the deflections are obtained by Simpson’s rule or some other technique 
to perform numerical integration, and tables presenting some books are 
limited to certain relationships [10-12].

This paper presents mechanical elements of rectangular 
nonprismatic members for symmetrical parabolic haunches subjected 
to a uniformly distributed load by through analytical models, these 
are: fixed-end moments, carry-over factors and stiffness factors. The 
properties of the rectangular cross section of member vary along its 
axis “x”, i.e., the width “b” is constant and the height “h” varies along 
the beam, this variation is parabolic type. Also a comparison is made 
between the proposed models, and tables that show some authors to see 
the differences.

Proposed Models
General principles of the parable 

Figure 1 shows a beam in elevation and also presents its rectangular 
cross-section taking into account the width “b” is constant and height 
“hx” varying of parabolic shape in three different part.
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The value “hx” varies with respect to “x”, this gives:

= +xh h y                                    (1) 

Now, the properties of the parable are used:

Equation for 0 ≤ x ≤ a:
2 2

1
2

( )+ −
=x

a y x ah
a

                                    (2)

Equation for a ≤ x ≤ L – a:

=xh h                                     (3) 

Equation for L − a ≤ x ≤ L:

2 2
1

2

( )+ − +
=x

a h y x L ah
a

                                  (4)

Derivation of the equations for uniformly distributed load

Fixed-end moments: Figure 2a shows the beam “AB” subjected to a uniformly distributed load and fixed-ends. The fixed-end moments are 
found by the sum of the effects. The moments are considered positive in counterclockwise and the moments are considered negative in clockwise. In 
Figure 2b shows the same beam simply supported at their ends at the load applied to find the rotations “ϴA1” and “ϴB1”. Now, the rotations “ϴA2” and 
“ϴB2” are caused by the moment “MAB” applied in the support “A”, according to Figure 2c, and in terms of “ϴA3” and “ϴB3” are caused by the moment 
“MBA” applied in the support “B”, seen in Figure 2d [13,14].

The conditions of geometry are [13-15]:

 

Figure 1: Rectangular section varying the height of parabolic shape.

 

Figure 2: Beam fixed at its ends.

http://dx.doi.org/10.4172/2168-9717.1000111


Citation: Luévanos Rojas A (2013) Mechanical Elements of Rectangular Nonprismatic Members for Symmetrical Parabolic Haunches Subjected to a 
Uniformly Distributed Load. J Archit Eng Tech 2: 111. doi:10.4172/2168-9717.1000111

Page 3 of 8

Volume 2 • Issue 2 • 1000111
J Archit Eng Tech
ISSN: 2168-9717   JAET, an open access journal 

1 2 3 0θ θ θ+ + =A A A                                      (5)

1 2 3 0θ θ θ+ + =B B B                                 (6)

The beam of Figure 2b is analyzed to find “ϴA1” and “ϴB1” by Euler-Bernoulli theory to calculate the deflections [16,17].

 The equation is:

= ∫ z

z

Mdy dx
dx EI                                    (7)

where: dy/dx=ϴz is the total rotation around the axis “z”, E is the modulus of elasticity of the material, Mz is the moment around the axis “z”, Iz is 
the moment of inertia around the axis “z”.

The moment at any point of the beam on axis “x” is [18]:

2( )
2
−

=z
w x LxM                                  (8)

The moment of inertia for a rectangular member is:
3

12
= x

z
bhI                                     (9) 

Equation (2), (3) and (4) for the three different segments are substituted into Equation (9), it is presented:

Equation for 0 ≤ x ≤ a:
32 2

1
2

( )
12

 + −
=  

 
z

a h y x abI
a                                (10)

Equation for a ≤ x ≤ L – a:
3

12
=z

bhI                                    (11)

Equation for L − a ≤ x ≤ L:
32 2

1
2

( )
12

 + − +
=  

 
z

a h y x L abI
a                                (12)

Then, the moment of inertia for a member of rectangular section is presented in Equations (10), (11) and (12).

a) For the segment 0 ≤ x ≤ a: 

Substituting Equations (8) and (10) into Equation (7) is presented:

6 2

32 2
1

6 ( )

( )

× −
=

 + ×− 
∫

dy wa Lx dx
dx Eb a h y a

                                            (13)

Integration of Equation (13) is developed: 

[ ] 2 2 2 21/2 3 26
1 1 1 11 1 1

24 5/2 3/2 1/2 3 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

9 ( ) (8 5 ) 3 ( ) (6 5 ) (33 ( ) ( ) ( 3 )[3 ( ) ]6 tan
8 8 [ 2 ( )] 8 2 ( )

 − + − − − + − + −− +  ×− − − +  = + + −  − + +    − + + 

x y a L hy a L ah a y a L hy a L h ay a L ah y a x ax y a L ahdy wa A
dx Eb a h y ah a h y x y axy a y h ah y x y axy a y h

12 2 2 2
1 1 1 1

2 )
8 [ 2 ( )]

     + − + +  

L
c

ah y x y axy a y h
       (14) 

Substituting x=a, into Equation (14) to find the rotation dy/dx=ϴa1, where the height “hx” varies the parabolic shape, it is:
6

1 14 2
1

6 2{ }
4

θ −
= +a

wa L a c
Eb a h y

                               (15)

b) For the segment a ≤ x ≤ L – a: 

 Substituting Equations (8) and (11) into Equation (7) is presented:

2
3

6 ( )= −∫
dy w x Lx dx
dx Ebh

                                (16)

Integration of Equation (16) is presented: 
3 2

23

6
3 2

 
= − + 

 

dy w x Lx c
dx Ebh                              (17)
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The boundary conditions are substituted into Equation (17), when x=L/2 and dy/dx=0 by symmetry that occurs, we get C2=L2/12. Then Equation 
(17) is showed: 

3 2 3

3

6
3 2 12

 
= − + 

 

dy w x Lx L
dx Ebh                                (18)

Now, the boundary conditions are substituted into Equation (18), when x=a, to find the rotation dy/dx=ϴa2, it is:

3 2 3

2 3

6
3 2 12

θ
 

= − + 
 

a
w a La L

Ebh
                              (19)

The boundary conditions are substituted into Equation (18), when x=L − a, to obtain the rotation dy/dx=ϴb2, it is:
3 2 3

2 3

6 ( ) ( )
3 2 12

θ
 − −

= − + 
 

b
w L a L L a L

Ebh                               (20)

Then, the Equations (15) and (19) are equalized, because rotations must be equal at the point x=a, where the height “hx” varies parabolically to 
find the constant “C1”, this is:

3 2 3

1 6 3 4 2
1

1 2
3 2 12 4

   −
= − + −  

   

a a L L L aC
a h a h y

                             (21)

Equation (21) is substituted into Equation (14) to obtain the rotations anywhere of the segment 0 ≤ x ≤ a:    

[ ] 1/2 3 2 2 2 2 26
1 1 1 1 1 1 1

4 5/2 3/2 1/2 3 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

3 ( ) ( ) ( 3 )[3 ( ) ] [9 ( ) (8 5 ) ] [3 ( ) (6 5 ) (3 2 )]6 tan
8 8 [ 2 ( )] 8 [ 2 ( )]

− +  − − − + − + − − − + − + −
= + + −  − + + − + + 

y a L ah y x a x ax y a L ah x y a L hy a L ah y a L hy a L h a Ldy wa A
dx Eb a h y ah a h y x y axy a y h ah y x y axy a y h

3 2 3

2 2 2 2 6 3 4 2
1 1 1 1 1

1 2
8 [ 2 ( )] 3 2 12 4

    − + − + −   − + +     

a a L L L a
h y x y axy a y h a h a h y  (22)

Substituting x=0, into Equation (22) to find the rotation in support “A”, it is presented:
2 3 2 3 3 2 3 3 2 1/26

1 1 1
1 6 3 4 5/2 3/2 1/2

1 1 1

[2 (4 6 ) (11 9 2 ) 3 ] [3 ( ) ]6 tan
24 ( ) 8

θ
  − + + − + + − + = −  +   

A
y a a L L a a L L a h y a L ah ywa A

Eb a h y y h a h y h
       (23)

c) For the segment L− a ≤ x ≤ L:

 Equations (8) and (12) are substituted into Equation (7), it is presented:
6 2

2 2 3
1

6 ( )
[ ( ) ]

−
=

+ − +∫
dy wa x Lx dx
dx Eb a h y x L a                            (24)

Equation (24) shown:

2 4 2 2 3 2 3 2 2 3 2 2 3 2
1 1 1 1 1 1 1 1

3 2 2 2 2 3 2 2 2 2 3 2 26
1 1 1 1 1 1

3 ( ) ( )(6 7 ) (3 ) [3 ( ) ] 3 ( )[3 ( ) ] [9 ( ) (8 11 3 ) ]
8 [ ( ) ] 8 [ ( ) ] 8 [ ( )6

− + − − + + − − + + − − + − + − + −
+ +

+ − + + − + + −
=

y a L ahy a L a aL L a h a L x y y a L ah x y a L y a L ah x y a L ahy a aL L a h
a h y y x a L a h a h y y x a L a h a h y y x a Ldy wa

dx Eb

2 2

1/2
1 1

34 5/2 3/2 1/2
1

]

3 ( ) ( )tan
8

 
 + 
 

   − + − + + +       

a h

y a L ah y x L aA c
a h y ah

     (25) 

Substituting x=L− a, into Equation (25) to find the rotation dy/dx=ϴb3, where the height “hx” varies the parabolic shape, it is:

6

3 34 2
1

6 2{ }
4

θ −
= +b

wa L a c
Eb a h y

                               (26)

Then, the Equations (20) and (26) are equalized, because rotations must be equal at the point x=L− a, where the height “hx” varies parabolically 
to find the constant “C3”, this value is:

3 2 3

3 6 3 4 2
1

1 ( ) ( ) 2
3 2 12 4

  − − −
= − + −  

   

L a L L a L L aC
a h a h y                               (27)

Equation (27) is substituted into Equation (25) to obtain the rotations anywhere of the segment L− a ≤ x ≤ L:

2 4 2 2 3 2 3 2 2 3 2 2 3 2
1 1 1 1 1 1 1

3 2 2 2 2 3 2 2 2 2 3 2 2 2 26
1 1 1 1 1 1

3 ( ) ( )(6 7 ) (3 ) [3 ( ) ] 3 ( ) ] [9 ( ) (8 11 3 ) ] 3
8 [ ( ) ] 8 [ ( ) ] 8 [ ( ) ]6

− + − − + + − − + + − + − + − + −
+ + +

+ − + ×+ − + + − +
=

y a L ahy a L a aL L a h a L x y y a L ah x y a L ah x y a L ahy a aL L a h y
a h y y x a L a h a h y y a L a h a h y y x a L a hdy wa

dx Eb

1/2
1 1

4 5/2 3/2 1/2
1

3 2 3

6 3 4 2
1

( ) ( )tan
8

1 ( ) ( ) 2
3 2 12 4

    − + − +
    

    
 

  − − − + − + −       

a L ah y x L aA
a h y ah

L a L L a L L a
a h a h y

 (28)

Substituting x=L, into Equation (28) to find the rotation in support “B”, it is presented:
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2 3 2 3 3 2 3 3 2 1/26
1 1 1 1

1 6 3 4 5/2 3/2 1/2
1 1 1

[2 (4 6 (11 9 2 ) 3 [3 ( )6 tan
24 ( ) 8

θ
  − + + − + + − + = − +  +   

B
y a a L L hy a a L L a h y a L ah ywa A

Eb a h y y h a h y h          (29)

Now, the beam of Figure 2c is analyzed to find “ϴA2” and “ϴB2” in function of “MAB” [16,17]:

The moment at any point of the beam on axis “x” is [18]:

( )−
= AB

z
M L xM

L
                                (30) 

Using the same procedure of previous case, we obtained the following results: 
6 3 1/2 2 1/2 3 3/2 1/2 3 2 3

1 1 1 1
2 6 3 3/2 1/2 4 2 6 3

1 1 1

12 6 6 2 ( ) 6 4tan
8 4 ( ) 6

θ
     − + + + − + = − + +      +      

AB
B

M a a h y a h y L a h y y a L ah L a L aA
EbL a h y L h a h y L y h a h L            (31)

6 3 1/2 2 1/2 3 3/2 1/2 3 2 3
1 1 1 1

2 6 3 3/2 1/2 4 2 6 3
1 1 1

12 6 6 2 ( ) 6 4tan
8 4 ( ) 6

θ
     − + + + − + = − + +      +      

AB
B

M a a h y a h y L a h y y a L ah L a L aA
EbL a h y L h a h y L y h a h L                                    (32)

Subsequently, the member of Figure 2d is analyzed to find “ϴA3” and “ϴB3” in function of “MBA” [16,17]:

The moment at any point of the beam on axis “x” is [18]:
( )

= BA
z

M xM
L

                                 (33)

Using the same procedures of previous cases, we obtained the following results: 
6 3 1/2 2 1/2 3 3/2 1/2 3 2 3

1 1 1 1
3 6 3 3/2 1/2 4 2 6 3

1 1 1

12 6 6 2 ( ) ( 6 4 )tan _
8 4 ( ) 6

θ
     − + + + − + = −      +      

BA
A

M a a h y a h y L a h y y a L ah L a L aA
EbL a h y L h a h y L y h a h L                                        (34) 

6 3 1/2 2 1/2 1/2 2 3 3/2 1/2 2 2 2 2 2 2 2 3 3
1 1 1 1 1

3 6 3 3/2 1/2 5 2 2 6 3
1 1 1

12 6 6 3 2 (2 2 3 ) (4 2 5 ) 2 ( )tan
8 8 ( ) 3

θ
     − + + + − + + − + − − = − +      +      

BA
B

M a a h y a h y L ah y L a h y y a aL L hy a aL L a h L a aA
EbL a h y L h a h y L y h a h L

    (35)

Equations (23), (31) and (34) of the support “A” is substituted into Equation (5) and Equations (29), (32) and (35) of the support “B” is substituted 
into Equation (6), these Equations are developed to find “MAB” and “MBA”, it is as follows:

1/2
2 1/2 1/2 2 3 2 3 3 2 3 3 21

1 1 1 1 11/2
1

1/2
1/2 2 2 1/2 2 1

1 1 1 1 1 1/2

3 ( )[3 ( ) ] tan [2 (4 6 ) (11 9 2 ) 3 ]
( )

2
3 [4 (2 ) (13 8 ) (3 4 )] 3 ( ) tan

   + − + − − + + − + +  
+    = =

  
− + − + − − +  

 

AB BA

ya h y h y a L ah A y y a a L L hy a a L L a h
hwL y hM M

yy L y y a L hy a L h a L ah y h A
h

 
 
 
 

   
      

                      (36)

Then, value of “MAB” and “MBA” are equal, this is a logical situation, since the member is symmetrical.

 

Figure 3: Beam simply supported at one end and fixed at the other.
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 Carry-over factors and stiffness: In order to develop the method to obtain the carry-over factor and stiffness, it will be helpful to consider the 
following problem: If a clockwise moment of “MAB” is applied at the simple support of a straight member of variable cross section simply supported 
at one end and fixed at the other, find the rotation “ϴA” at the simple support and the moment “MBA” at the fixed end, as shown in Figure 3.

The additional end moments, “MAB” and “MBA”, should be such as to cause rotations of “ϴA” and “ϴB”, respectively. If “ϴA2” and “ϴB2” are the end 
rotations caused by “MAB”, according to Figure 3(b), and “ϴA3” and “ϴB3” by “MBA”, these are observed in Figure 3(c).

The conditions of geometry required are [13]:

2 3θ θ θ= −A A A                                  (37) 

2 30 θ θ= −B B                                (38) 

The beam of Figure 3b is analyzed to find “ϴA2” and “ϴB2” in function of “MAB” are shown in Equations (31) and (32). The beam of Figure 3c is 
analyzed to find “ϴA3” and “ϴB3” in function of “MBA” of the same way; these were obtained by Equations (34) and (35).

Now, Equation (32) and (35) are substituted into Equation (38). Subsequently, this is used to obtain “MBA” in function of “MAB”:

1/2
1/2 2 3 2 3 3 2 3 3 2 2 1/2 1

1 1 1 1 1 1 1 1/2

1/2
1/2 2 2 2 2 1/2 3 3 2 2 31

1 1 1 11/2

2( ) [2 (4 6 ) (11 9 2 ) 3 ] 3 ( )[3 ( ) ] tan

3 ( ) [3 (2 2 ) 2 ] tan 8 (2 3 3 )

   + − + + − + + − + − +  
   =

 
+ − + + − − + − + 

 

BA

yy h y y a a L L hy a a L a h a h y h y a L ah A
h

M
yah y h y a aL L a h A y y a a L aL L h
h

2 3 2 2 3 2 3 2 2 3 3 3
1 1(38 42 39 16 ) (28 18 9 8 ) 6

 
 
 
     − + − + − + − +      

ABM
y a a L aL L h y a a L aL L a h

     (39)

Therefore, the carry-over factor of “A” to “B” is the ratio of the moment induced at point “B” due to the moment applied at point “A”; this is the 
moment coefficient “MAB” expressed in the Equation (39). The carry-over factor of “B” to “A” is equal, since the member is symmetrical. 

Now, Equation (31) and (34) are substituted into Equation (37). Subsequently, Equation (39) is substituted in this same Equation to find “MAB” 
in function of “ϴA”:

Haunches Fixed-end moments 
=mwl2

Carry-over factors Stiffness
=kABEI/L

m CAB=CBA kAB=kBA

a y1/h PM TM PM TM PM TM
0.10 0.4 0.0873 0.5368 4.5642

0.6 0.0885 0.5429 4.7594
1.0 0.0902 0.5643 5.0504
1.5 0.0915 0.5772 5.3012
2.0 0.0924 0.5858 5.4798

0.20 0.4 0.0903 0.5655 5.1604
0.6 0.0925 0.5872 5.6311
1.0 0.0955 0.0956 0.6186 0.619 6.4123 6.41
1.5 0.0980 0.6445 7.1711
2.0 0.0996 0.6622 7.7650

0.30 0.4 0.0923 0.5854 5.7580
0.6 0.0952 0.6154 6.5777
1.0 0.0994 0.6601 8.0959
1.5 0.1028 0.6979 9.7831
2.0 0.1050 0.7242 11.2682

0.40 0.4 0.0934 0.5965 6.3244
0.6 0.0968 0.6319 7.5376
1.0 0.1017 0.6860 10.0223
1.5 0.1058 0.7333 13.1794
2.0 0.1085 0.7668 16.3398

0.50 0.4 0.0937 0.5991 6.8352
0.6 0.0972 0.6363 8.4464
1.0 0.1025 0.1025 0.6945 0.694 12.0224 12.03
1.5 0.1069 0.7465 17.1028
2.0 0.1099 0.7840 22.8026

PM=Proposed model
TM=Traditional model

Table 1: Mechanical elements of rectangular nonprismatic members for symmetrical parabolic haunches subjected to a uniformly distributed load.
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3 3 2 2 3 2 3 2 2 33 1/2 2 1/2
1 11/2 1/2 2 2 2 21 1 1

1 1 1 1/22 3 2 2 3 3 3
1

2 4
1 1

8 (2 3 3 ) (38 42 39 16 )2 ( ) 3 ( ) [3 (2 2 ) 2 ] tan
3 (28 18 9 8 ) 6

9 ( ) [3 (2

  − + − + − + −  +  − + − + +   + − + − +      

=

+

AB

y a a L aL L hy a a L aL Lh y Eb y h yy ah y h y a aL L a h A
hh y a a L aL L a h

M

a h y h y a
21/2

2 2 1/2 1/2 3 3 2 3 2 2 31
1 1 11/2

1/2
2 3 2 2 3 2 3 2 5 4 4 4 3 2 21

1 1 1 1 11/2

) 4 ] tan 6 [8 (2 ) (132 17 87 16 )

(72 76 33 8 ) 4 (3 2 )]( ) tan [16 (2 ) 16 (64 116 84 2

  
− + + − − + − + −  

  
 

+ − + − + − + + − + − + − 
 

yL a h A ah y y a L hy a a L L L
h

yh Y a a L aL L a h a L y h A y y a L hy a a L a L
h

3 4

2 3 4 3 2 2 3
1
4 3 2 4 3 2 2 3 4 4 4 3

1 1
2 2 3 4 3 5

9 4 )

(1532 2484 1659 592

96 ) 2 (526 760 429 152 32 ) (324 428

171 48 16 ) 12 (3 4 )]
















 −

 
 
 
 
 + 
  + − + − 
 + + − + − + + − + 
 − + + −
 
 
 
  

aL L

h y a a L a L aL
L h y a a L a L aL L h y a a L

a L aL L a h a L

θ




















 
 
 
 
 
 
 
 
 
 
 
 
 

A               (40)

Now, if we present the stiffness factor as a function of the moment of inertia, this is shown as follows:
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Therefore, the stiffness factor is the moment applied at the point “A” due to the rotation induced of 1 radian in the support “A”; this is the 
coefficient of the rotation “ϴA” expressed in the Equation (40). The stiffness factor of the moment applied at the point “B” due to the rotation induced 
of 1 radian in the support “B”, also is expressed in the Equation (40), since the member is symmetrical.

Results
Table 1 shows the comparison of the two models, the proposed model is the mathematical model presented in this paper and the traditional 

model is shown in the table. 

According to this table shows that there are only two values for symmetric parabolic haunches and these are equal.

PM=Proposed model

TM=Traditional model

Also other way to validate the proposed model is as follows: in Equations (36) is substituted “a=0L” to obtain the fixed-end moments 
“MAB=wL2/12” and “MBA=wL2/12”, in the Equation (39) is substituted “a=0L” to find the carry-over factor “CAB=CBA=0.5” and to obtain the stiffness 

http://dx.doi.org/10.4172/2168-9717.1000111


Citation: Luévanos Rojas A (2013) Mechanical Elements of Rectangular Nonprismatic Members for Symmetrical Parabolic Haunches Subjected to a 
Uniformly Distributed Load. J Archit Eng Tech 2: 111. doi:10.4172/2168-9717.1000111

Page 8 of 8

Volume 2 • Issue 2 • 1000111
J Archit Eng Tech
ISSN: 2168-9717   JAET, an open access journal 

factor is substituted “a=0L” in the Equation (40) and this is “KAB=KBA=Ebh3/3L=4EI/L”. The values presented above correspond to a constant cross 
section. Therefore the proposed model in this paper is valid and is not limited to certain dimensions or proportions as shown in some books.

Conclusions
This paper presented mechanical elements of rectangular nonprismatic members for symmetrical parabolic haunches subjected to a uniformly 

distributed load by through analytical models, these are: fixed-end moments, carry-over factors and stiffness factors. The properties of the rectangular 
cross section of the beam vary along its axis, i.e., the width “b” is constant and the height “h” varies along the beam, this variation is parabolic type.

The mathematical technique presented in this research is very adequate for the fixed-end moments, carry-over factors and stiffness for rectangular 
nonprismatic members subjected to a uniformly distributed load, since the results are accurate, because it presents the mathematical expression.

The significant application of fixed-end moments and the stiffness of a member is in the matrix methods of structural analysis to obtain the end 
moments acting. The factor of carry-over is used in the moment distribution method or Hardy Cross method.

Traditional methods for the nonprismatic members are used to obtain deflections are: the conjugate-beam method used Simpson’s rule, or any 
other technique to perform numerical integration. The tables showing some authors are restricted to certain relationships. Besides the effectiveness 
and accuracy of the models presented in this research, a significant advantage is that fixed-end moments, carry-over factors and stiffness factors 
are calculated for any rectangular cross section of the beam for symmetrical parabolic haunches using the mathematical expression corresponding.

 The mathematical models presented in this paper apply only for rectangular beams subjected to a uniformly distributed load of variable cross 
section for symmetric parabolic haunches. The suggestions for future research: 

1) When the member presented another type of cross section, by example variable cross section of drawer type, “T” and “I”. 

2) When the member has another type of configuration, by example straight type. 

3) When the member is subjected to another type of load, by example concentrated load type and triangularly distributed load. 

4) When the haunches are not symmetric.
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