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Abstract

Mitochondrial dysfunction/malfunction is an important risk factor for the onset and progression of endothelial cells
dysfunction, a key contributor to diabetes mellitus associated cardiovascular disease. The topics discussed here are:
(i) The regulatory role of mitochondrial ROS in normal, healthy vascular endothelium, (ii) The adverse alteration of
mitochondrial function in diabetes-related endothelial dysfunction, (iii) The endeavors towards correction of
mitochondrial malfunction in dysfunctional endothelium, (iv) The key points of mitochondria-targeted interventions in
diabetic patients, and (v) The pending, incompletely understood issues that open new basic research directions and
may conduct to innovative therapeutic strategies in diabetes.

Keywords: Endothelial dysfunction; Mitochondrial dynamics;
Mitochondrial medicine

Introduction
Endothelial cells (ECs) cover the lumen of all blood vessels and

ensure homeostasis preservation. In physiologic conditions, ECs
mitochondria have unique functional traits: (i) a reduced engagement
in generation of the energy-rich molecule adenosine-5'-triphosphate
(ATP) [1,2]; instead, the source of ATP required for the development
of the normal metabolic activity of ECs is the anaerobic glycolysis
[3-7]; (ii) a commitment to sense the local environmental signals, and
to respond accordingly by regulating the intracellular signaling
pathways that assure ECs survival; (iii) a rather modest content per
endothelial cell (less than 5% of cytosol volume), a level compatible to
the low energy requirements imposed by the ECs normal, quiescent
phenotype [3]. ECs mitochondria perform also functions in common
with those exerted in cells with higher energy demands (e.g. the
cardiomyocytes), such as: the generation of mitochondria-derived
reactive oxygen species (mtROS) and the regulation of their level by
antioxidant mechanisms [8,9], the dynamic shape changes via fusion
and fragmentation (fission) events, and the specific autophagic
degradation of the malfunctioning mitochondria by “mitophagy”,
associated with the execution of the “quality control” activity [10,11].

In diabetes mellitus, hyperglycemia triggers mitochondrial
dysfunction/malfunction characterized by the decrease in membrane
potential, the dysfunction of the respiratory chain, and the
overproduction of mtROS that signal the switch of ECs phenotype
from quiescent to “activated” [10]. This change engages the luminal
aspect of ECs plasmalemma (where novel molecules are expressed),
the cytosol (where AMP kinase becomes upregulated), and
mitochondria, where the glycolytic ATP production is replaced by
lipid-derived free fatty acids (FFA) β-oxidation [4,12]. The latter
pathway provides the carbons for de novo nucleotide biosynthesis,
linked to ECs proliferation [7,13]. The “activated” ECs are constantly
challenged by the high glucose concentration and the circulating
oxidative stress that stimulate the influx of extracellular Ca2+ into the
cytosol, where accumulate within microdomains close to the inner

aspect of ECs plasmalemma. As mitochondria are anchored in this
particular location, Ca2+ enter their matrix, and activate the key Ca2+-
sensitive enzymes (e.g. Ca2+-sensitive dehydrogenases, ATP synthases)
involved in ATP synthesis via oxidative phosphorylation pathway
(OXPHOS) [3,12]. The aerobic mitochondrial metabolism provides the
ATP essential for the biosynthesis of vasoconstrictor molecules,
inflammatory cytokines, adhesion molecules, and growth factors.
Diabetes induces also the uncoupling of endothelial NO synthase
(eNOS) associated with increased levels of superoxide anions (O2

•-)
and with a diminished formation of nitric oxide (•NO) an
endothelium-dependent vasorelaxant [14]. The low •NO levels are
caused also by the rapid reaction with O2

•- and formation of the potent
oxidant peroxinitrite anions (OONO-) that can damage proteins, lipids
and nucleic acids. Moreover, OONO- generates reactive nitrogen
species (RNS) that induce modification of mitochondrial Complexes I
and III, and exacerbate mtROS production [8]. Ultimately, the
overproduction of mtROS along with the intracellular oxidative stress
(ROS and RNS) overwhelms the antioxidant defense mechanisms, the
cytochrome c and mitochondrial DNA (mtDNA) are released, and
finally ECs apoptosis is installed [6,15]. The interrelated processes
exemplified above endorse mitochondrial dysfunction/ malfunction as
an important risk factor for the onset and progression of endothelial
dysfunction, a key contributor to diabetes-associated cardiovascular
disease [16]. The details of these relationships are examined in the
following sections: (i) The regulatory role of mtROS in normal, healthy
vascular endothelium, (ii) The adverse alteration in mitochondrial
function in correlation with diabetes-related ECs dysfunction, (iii) The
endeavors towards correction of mitochondrial malfunction in
dysfunctional ECs, and (iv) The key points of mitochondria-targeted
interventions in diabetic patients. The review is concluded by the
pending, incompletely understood issues that may open promising
new directions in the diabetes treatment.

Mitochondrial ROS Regulate the Normal Functions of
Endothelium
The major mtROS in vascular endothelium are: (i) the free radicals

of short half-life that do not diffuse across membranes, such as O2
•-

(half-life in the range of nano-to milliseconds) and hydroxyl radicals
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(•OH) (half-life of few nanoseconds) and (ii) the hydrogen peroxide
(H2O2), a stable, freely diffusible molecule [8].

Within the healthy ECs, mtROS are generated during electron
transport chain (ETC) embedded within the inner mitochondrial
membrane (IMM). The polypeptide complexes I, II, and III of ETC
release O2

•- into the mitochondrial matrix, where manganese
superoxide dismutase (MnSOD or SOD2) rapidly convert O2

•- to
H2O2; furthermore, the polypeptide complex III releases the O2

•- both
into the matrix and the intermembrane space; in the latter location,
copper-zinc superoxide dismutase (CuZnSOD or SOD1) convert the
O2

•- into H2O2 [17,18]. The H2O2 molecules either diffuse into the
cytosol or interact with mitochondrial proteins; in the presence of Fe2+

or Cu2+ ions, H2O2 molecules are transformed into •OH (a potent
ROS) via a Fenton reaction. In an additional pathway, local glutathione
peroxidase decomposes H2O2 to H2O and O2. An earlier report
demonstrated the involvement of H2O2 in shear stress-induced
vasodilatation of coronary resistance arteries [19].

In physiologic conditions, mitochondria exert a rigorous control on
ECs functional integrity and homeostasis by distinctive mechanisms
[2,20]: (i) generation of moderate levels of mtROS, and regulation of
their conversion and/or scavenge during cells response to shear stress
[3,8,11,21], (ii) operation of mtROS as signaling molecules, (iii)
involvement in eNOS activation and Ca2+ homeostasis regulation, with
participation of mitochondrial connexin 40 and mitochondrial
interaction with ER [22]; moreover, eNOS activation is engaged in the
balanced production of ECs vasodilators/vasoconstrictors during
vascular tone regulation [23,24] and (iv) execution of mitochondrial
quality control, that ensure organelle`s health maintenance; the
coordinated processes of fusion, fission, and mitophagy contribute
either to prevention of ECs dysfunction, safeguarding the survival of
the cells [10], or to ECs death [8,21].

Besides mitochondria, ECs redox homeostasis is regulated by
several other key controllers: (i) the peroxisome proliferator activated
receptor-gamma coactivator 1α (PGC-1α), that transcriptionally
regulates the mitochondrial antioxidant enzymes [25], (ii) the •NO,
that S-nitrosylates and inhibits the activity of mitochondrial complex I
[26,27], (iii) the Ca2+ bioavailability, that stimulates •NO generation by
eNOS [28], and (iv) the tetrahydrobiopterin (BH4), a redox-dependent
modulator of mitochondrial signaling [29].

Taken together, the implications outlined above ascertain the
regulatory and controller role of moderate mtROS levels in the normal
and healthy ECs. In contrast, the overproduction of mtROS uncovers
traits of mitochondrial dysfunction installment, with multiple
consequences on the pathology of the vascular endothelium, as
discussed next.

The Adverse Alterations in Mitochondrial Function
Contribute to Type 2 Diabetes Mellitus-Related
Endothelial Dysfunction

Mitochondrial dysfunction is biochemically described by ETC
malfunction characterized by impaired OXPHOS, reduced ATP
generation, and overproduction of mtROS. Based on its triggers,
mitochondrial dysfunction is classified into two types: (a) the “primary
mitochondrial dysfunction”, caused by mutations in either nuclear or
mitochondrial DNA and central for the largest group of inborn errors
of metabolism known as “mitochondrial disorders” and (b)
the ”secondary/acquired mitochondrial dysfunction”, caused by
malfunctions that originate outside mitochondria, and are shared by

the common forms of diabetes mellitus, inflammation, neoplasia,
neurodegenerative and ischemic diseases, as well as by the ageing
process [30-35].

In endothelium, mitochondrial dysfunction is installed under the
influences of several circulating risk factors. An important endanger is
the shear stress, defined as the tangential frictional force of blood flow
acting on the vessel wall [36]. The perturbation of local hemodynamics
engages the ECs mechano-sensors (such as G protein-coupled
receptor), mechano-activated ion channels, growth factor receptors,
glycocalyx, caveolae, membrane lipids, junction proteins, cytoskeleton
network, integrins, focal adhesion kinase, etc. that all trigger the
mecano-transduction process [37]. Among the biochemical
consequences of the latter process, the literature quotes the
modification of redox balance [11], activation of eNOS leading to
increased •NO bioavailability, and S-nitrosation of redox-sensitive
cysteine-containing ECs proteins [36]. Interestingly, the steady laminar
or the pulsatile shear stress and the flow subsequent a period of
ischemia causes enhanced production of mtROS and RNS,
mitochondrial fission and ECs propensity to apoptosis [21].

Other risk factors for mitochondrial dysfunction installment are the
unusual biochemical compounds present in the blood in
pathophysiologic circumstances. In diabetes mellitus, circulating
hyperglycemia upregulates mtROS production, inhibits the
intracellular buffering system of ROS, damages the mtDNA [1,38] and
stimulates mitochondrial apoptosis via ROS generated from electrons
transfer between cytochrome c and the 66-kDa Src homology 2
domain-containing protein (p66Shc) [39]. The recent data show that
high glucose concentration additionally induces p66Shc lysine
acetylation, followed by its phosphorylation on serine 36 and the
subsequent translocation to the mitochondria; at this specific location,
acetylated p66Shc promotes H2O2 generation, augmenting mtROS
levels [40]. The excessive mitochondrial O2

•- generation may alter
histone methylation in ECs leading to chronic upregulation of nuclear
factor kappa B (NF-κB) and to vascular inflammation [41].
Interestingly, the pre-diabetic condition is pro-inflammatory and
associated with the release of mtDNA (a probable inducer of early
endothelial dysfunction) and activation of the endothelial toll-like
receptor 9 (TLR9) [42]. Furthermore, overproduction of mtROS shunts
glucose to the hexosamine biosynthetic pathway (HBP); enhanced
HBP activity inhibits protein subunits of mitochondrial respiratory
complexes I, III, and IV and results in ATP depletion, along with the
long-term activation of pro-inflammatory signaling pathways [43].
Published reports indicate that hyperglycemia causes defective
mitochondrial biogenesis, mitochondrial fragmentation, excessive
autophagy, and accumulation of toxic waste (such as ubiquitin and
irreversibly depolarized mitochondria) within ECs [15,44,45]. The high
concentration of FFA (like palmitic acid) or oxidized lipoproteins (like
oxLDL) are also reported as risk factors for mitochondrial dysfunction
induction. Thus, the growth of ECs under high palmitic acid
conditions leads to a shift of cells metabolism toward the intensified
oxidation of FFAs associated with mitochondrial oxidative dysfunction
[4]. Other reports on diabetic retinopathy show that lipotoxicity
induced by high palmitic acid damages mtDNA, decreases cytochrome
b transcripts, and augments glucotoxicity effects [40]. Furthermore,
oxLDL promotes accumulation of mtROS and induces damage to the
mtDNA, thus contributing to ECs dysfunction [46,47].

Based on the recent findings, it is important to update the latest data
on the biomarkers of mitochondrial and endothelial dysfunction. It is
generally admitted that mitochondrial dysfunction biomarkers consist
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in excessive mtROS production, altered IMM potential (Δψm), an
indicator of mitochondrial respiratory chain function/malfunction
[48], mitochondrial DNA (mtDNA) damage [10], and ATP depletion;
the latter process activates AMP-activated protein kinase (AMPK)
signaling pathway leading to excessive autophagy and to ECs apoptosis
[15]. Such adverse alterations have an important pathophysiologic role
in Type 2 diabetes mellitus in humans [49].

An additional biomarker of mitochondrial dysfunction is the
modification of morphology through dynamic fusion/fission events
[6]. In ECs, mitochondrial tethering and fusion of their outer
membranes (OMM) are mediated by the GTPase dynamin-like
proteins mitofusin 1 (MFN1) and 2 (MFN2) [50]. The fusion of the
IMMs involves optic atrophy protein 1 (OPA1), another member of the
GTP-ase dynamin-like proteins. The fusion roles are the preservation
of mitochondrial network by complementation of damaged mtDNAs
with healthy ones and the maintenance of membrane potential [51]. In
diabetic conditions, mitochondrial dynamic changes are associated
with increased abundance of fission inductors, such as dynamin-
related protein-1 (DRP-1) and fission-1 protein (FIS1), and by mtROS
overproduction [21,38].

The mitochondrial fission role consists in the removal of
malfunctioning segment within fused mitochondria, preserving a
population of healthy mitochondria. Recent reports emphasize that
exposure of the human arterioles to low-glucose concentration
activates the mitochondrial fission process [52]. In ECs, mitochondrial
fission was found to be associated with oxidative stress, activation of
the NLRP3 inflammasome, diabetes [38,53,54], and diabetes-
accelerated atherosclerosis [55]. According to the novel developments,
the occurrence of mitochondrial dysfunction in ECs is one of the
causative factors in the pathophysiology of cardiovascular diseases
[6,56-58].

Endothelial dysfunction was traditionally described by reduced •NO
bioavailability, and impairment of the vascular wall relaxation in
response to blood flow, agonists (acetylcholine, bradykinin), and
several diseases such as diabetes mellitus, atherosclerosis,
hypertension, heart failure, ischemia-reperfusion injury [2]. Moreover,
ECs dysfunction is the first event in cardiovascular disease [21] and is
a major stimulus of vascular aging [59].

The contemporary data point out to several factors/processes
associated with endothelial dysfunction, as follows:

(i) The oxidative stress developed under pathophysiologic
circumstances. In these conditions, besides mitochondria, a
considerable number of enzymatic sources are engaged in endothelial
ROS production, such as the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase isoforms (Nox) 2 and 4, the uncoupled
eNOS, the cytosolic xanthine oxidase, and the decreased levels and/or
activities of antioxidant superoxide dismutase(SOD) and catalase
(CAT) [21,36,48]. The imbalance between aberrant ROS generation
and antioxidant defense systems represents the primary cause of
endothelial dysfunction, leading to vascular damage [60].

(ii) The nitrosative stress, characterized by increased RNS levels; the
mechanisms involved consist in uncoupling of the NOS and oxidative
damage to lipids, proteins and DNA [61]. At the crossroad between S-
nitrosation and ROS, the S-nitrosating agent S-nitrosocysteine
(CysNO) was found to induce mitochondrial dysfunction in ECs, to
cause nearly complete depletion of ATP and NAD+ and to trigger cells
death [62].

(iii) The ER stress induces endothelial dysfunction by enhancement
of NADPH oxidase activity along with oxidative stress and by the
diminishment of eNOS activity associated with the impairment of
endothelial-dependent vasorelaxation [63-65].

(iv) Endothelial dysfunction mobilizes also the coupling factor 6
(CF6, a component of mitochondrial ATP synthase), the Humanin (a
24-amino-acid peptide encoded by the 16S rRNA region of the
mitochondrial genome that specifically influences mtROS generation),
the cardiolipin (a phospholipid located at the IMM); when shifted to
the OMM, cardiolipin activates the autophagic degradation of
mitochondria [2].

(v) The advanced glycation end products (AGEs) promote the
formation of Endothelial cell Specific Molecule-1 (ESM-1) (endocan),
an endothelial dysfunction marker in diabetes [66]. The recent data
show that AGEs trigger NF-κΒ- and activator protein-1 (AP-1)-
mediated upregulation of Lysyl oxidase and Endothelin-1 via the AGE/
RAGE/MAPK signaling cascade, being an aggravating factor for
endothelial dysfunction [67].

(vi) The elevated expression of pro-inflammatory and pro-
thrombotic factors [16] and the generation of microparticles with pro-
adhesive and pro-coagulant properties [14] are other traits of
pathology-related ECs dysfunction.

Taken together, the risk factors and the biomarkers outlined above
emphasize the close relationship between mitochondrial and
endothelial dysfunction, important triggers for the development and
progression of organ damages [14].

The Endeavours towards Correction of Mitochondrial
Malfunction in Dysfunctional ECs

An outlook on dysfunction inductors (ordered according to their
sources, i.e. the circulating blood, the ECs mitochondria, and ECs
metabolism) in parallel with the specific modulators/suppressors
involved in correction of each distinctive harmful effect is reviewed in
Table 1. The insight into the mechanisms beyond alleviation of
hyperglycemic mitochondrial and endothelial dysfunction outlined in
Table 1 emphasizes two main correcting approaches: to point a distinct
endothelial pathway and/or to target simultaneously several
intracellular mechanisms employing a single modulator/suppressor.
The distinct endothelial pathways targeted are:

(i) The improvement of eNOS activity by oral supplementation with
L-arginine (the substrate of eNOS) [68,69], by nitrones that reverse
eNOS dysfunction [70], or by intervention on posttranslational
modifications, decreasing SOD2 ubiquitinilation [71] and signaling via
wingless-type family member 5a (Wnt5a) and c-Jun N-terminal kinase
(JNK) [72],

(ii) The counteraction of acute glucose fluctuations by insulin [73],

the  modulation of endogenous hydrogen sulfide  (H2S) catabolism
by overexpression of cystathionine-γ-lyase (CSE) [74],

(iii) The correction of renin-angiotensin system-mitochondrial
damage by angiotensin-converting enzyme inhibitors (ACEIs) or
angiotensin II type 1 receptor blockers (ARBs) [75],

(iv) The activation of the mitochondrial defense system
[25,58,76,77],
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(v) The activation of antioxidant genes expression by nuclear factor-
erythroid 2-related factor (Nrf2), a redox-sensitive transcription factor
[78,79] and

(vi) The enrichment of mitochondria in silent mating-type
information regulator 3 (SIRT3) deacetylase, leading to increased
complex I activity and ATP synthesis [80].

A major role in dysfunction modulation is played by AMP kinase
activation [81-87], a metabolic stress sensor implicated in
mitochondrial fission (by DRP1 phosphorylation at Ser 637) [53-55],
potentiation of mitochondrial biogenesis (by SIRT1, that activates
PGC-1α-mediated transcription of nuclear and mitochondrial genes)
[88-90], modulation of •NO generation [57] and stress adaptation via
signaling through eNOS-dependent mammalian target of rapamycin
complex 1 (mTORC1) pathway [91]. Moreover, the physiological
substrate of AMPK is glutamine: fructose-6-phosphate
amidotransferase 1 (GFAT1), the rate-limiting enzyme in the HBP that
controls the post-translational modification of proteins by O-
GlcNAcylation [92,93].

An ongoing endeavor points toward the amelioration of
mitochondrial ROS overproduction by delivery of antioxidants that
selectively target mitochondria, and concentrate at the matrix surface
of IMM [94-96]. Encouraging results were reported for mitoquinone
(MitoQ 10) [97,98] and plastoquinonyl decyltriphenylphosphonium1
(SkQ1) [99] that ameliorate antioxidant status, and for several other
compounds and strategies aiming regulation of the mitochondrial
antioxidant defense system (Table 1).

Efficient are also the scavengers against the free radicals, such as the
mitochondria-targeting SOD mimetic MitoTEMPOL [49,71],
metallothioneins (low molecular weight, cysteine-rich and heavy metal
binding proteins) [100,101], polyphenols, like resveratrol [102] and the
isoflavone kakkalide, that additionally restore mitochondrial
membrane potential [103]. Furthermore, the mitochondrial
uncoupling agents, carbonyl cyanide m-chlorophenyl hydrazone
(CCCP), 2,4-dinitrophenol (2,4-DNP), and Uncoupling protein 2
(UCP2) are examples of alleviators directed towards amelioration of
mitochondrial ROS overproduction [49,58,104,105].

Among the modulators/suppressors that target different
intracellular pathways, the recent reports mention metformin that
promotes mitochondrial biogenesis by activation of PGC-1α [84,106],
and several genetic manipulations. The silencing of Prolyl-isomerase 1
(Pin 1) gene suppresses mitochondrial translocation of pro-oxidant
adaptor p66 (Shc) and the subsequent organelle disruption. This
procedure is also effective in restoring •NO release by ECs, and in
blunting NF-kB p65 nuclear translocation known to trigger expression
of adhesion molecules, e.g. the Vascular cell adhesion protein 1
(VCAM-1), Intercellular adhesion molecule 1 (ICAM-1) and
Monocyte chemoattractant protein-1 (MCP-1) [107].

A recent example is the silencing of FIS1 or DRP1 protein
expression (with siRNA) that conducts to inhibition of mitochondrial
fission, of high glucose-induced alterations in mitochondrial networks,
and of ROS generation; these effects were concurrent with eNOS
activation and cGMP production [38].

Another strategy consists in suppressing the expression of
endogenous voltage-gated K+ (KV) channel pore subunit KV1.5
(Kv1.5); the outcome is inhibition of two intracellular pathways:
mitochondria-mediated ROS generation and the apoptotic signaling
pathway [108]. Furthermore, activation of AMPKα by C-peptide

corrects mitochondrial dynamics alterations (by inhibiting
mitochondrial fission and mitochondrial membrane potential
collapse), prevents ROS generation induced by high glucose
concentration, and impedes ECs apoptosis [109].

The targets and the intracellular mechanisms described above and
in Table 1 emerge from studies on ECs in culture and in vivo (animal
models or human vessels). However, for a target-to-treat strategy
clinicians should be aware that mitochondrial dysfunction signature
may vary according to the vascular bed under study, heterogeneity of
endothelium, and diversity of (patho) physiological risk factors
involved. Consequently, the current efforts to prevent and/or to correct
the mitochondrial malfunction in dysfunctional ECs are still an
ongoing endeavor.

The Key Points of Mitochondria-Targeted Interventions
in Diabetic Patients

Initially, mitochondrial medicine anticipated the application of
mitochondrial-directed interventions in the treatment of patients
affected by “primary mitochondrial dysfunction” [31,110]. The use of
mitochondriotropics, mitochondriotoxics, mitocancerotropics, and
mitocans (mitochondria-targeted anticancer drugs) to treat
“mitochondrial diseases” has been discussed in excellent reviews
[35,111].

However, besides the management of symptoms, there are no
effective therapies for “mitochondrial disorders” mitigation [34].

The “secondary mitochondrial dysfunction” associated with diabetes
mellitus and insulin resistance is a distinct topic that requires
appropriate alleviators able to slow down the associated cardiovascular
pathology and their symptoms (Table 1).

Further insight into this topic is an urgent task, according to the
prediction of a huge number of diabetic patients (439 million) by 2030
and of the higher frequency of this pathology at people aged between
40 and 59 years [42,59].

What are the key points of mitochondria-targeted interventions in
diabetic patients? The current strategies are based on data obtained by
in vitro investigation of human cells; their translation to Type 2
diabetic patients concluded with FDA-approved mitochondrial
biogenic agents, such as the AMPK activator metformin [85] and the
PPARγ agonist Rosiglitazone [112] and the launch of Imeglimin as an
oral glucose-lowering agent that completed a phase 2b clinical trial
(US/EU EudraCT number 2012-004045-33) [113].

Other strategies considered in the diabetes treatment target the
disturbed intracellular events, such as suppression of augmented
mitochondrial fission [21,38,55], activation of mitochondrial
biogenesis [112,114-116], mitochondrial Sirtuins [1,88], and the UCP2
pathway [117].

A caution related to the mitochondria-targeted therapeutic
interventions emphasizes that some diabetes-related pathologies might
not have solely a mitochondrial origin, but mitochondria might
interfere either at their inception or during their development [115].

Thus, mitochondria-targeted antioxidants have been found efficient
in all the major vascular beds disturbed by diabetes, i.e. myocardium
(preventing cardiomyocytes loss and the reduced energy supply),
kidney, neurodegenerative and eye diseases [56,118-121].
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Other mitochondrial-based potential treatments of renal diseases
include genetic therapies, thiazolidinediones, Sirtuins, and resveratrol
[34,56]. However, the therapeutic procedures directed specifically

towards dysfunctional mitochondria of diabetic vascular endothelium
in humans are still waiting to be uncovered.

Dysfunction inductors Modulators/Suppressors aiming dysfunction alleviation References

From circulating blood

High glucose concentration L-arginine

Heme oxygenase-1 upregulation

ACEIs, ARBs

Metformin

[68*,69]

[78]

[75]

[82]*

Acute glucose fluctuations insulin [73]*

Low glucose concentration Metformin, Mito-TEMPOL

DRP1

[81]*

[52]*

Free fatty acids/

Palmitic acid

corosolic acid

exogenous H2S

Kv1.5 suppression

[53]

[15]

[108]

AGEs Activation of Nrf2-dependent antioxidant gene expression

Anemarrhena asphodeloides polyphenols

[78]

[86]

Decreased H2S level exogenous H2S

Overexpression of CSE

[15]

[74]

From mitochondria

Excessive mtROS Mitochondria-targeted antioxidants

MitoQ(10)

SkQ1

Resveratrol

paroxetine

Mitochondrial ROS scavengers

MitoTEMPOL

Metallothioneins

Mitochondrial uncoupling agents

CCCP

2,4-DNP

UCP2

Regulation of mitochondrial antioxidant defense system

Metformin

PGC-1α overexpression

Diallyl trisulfide

FIS1 or DRP1 expression silencing

Pin1 gene silencing

Nitrones spin traps

alpha-phenyl N-tertiary-butyl nitrone, 5,5-dimethyl-pyrroline N-oxide

[94*,95,96]

[83,97,98]

[99]

[80]*

[117]

[49*,71]

[100,101]

[49]*

[104]*

[58,105]

[84]*

[25]*

[76]

[38]*

[107]*

[70]

PTP opening Metformin [113]*

Mitochondrial dynamics alteration Inhibitors of mitochondrial fission

Metformin

corosolic acid

d-chiro inositol

C-peptide activation of AMPKα

[55]

[53]

[103]

[109]*
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FIS1 or DRP1 expression silencing

Reduced mitochondrial biogenesis Mitochondrial biogenesis stimulation:

SIRT 1

Metformin

Thiazolidinediones

Resveratrol

Esculetin

C1q/TNF-related protein9

5-Aminoimidazole-4-carboxamide ribonucleotide

[1], [89]*

[84]*

[106]*

[34,102*,114]

[57]

[90]

[34]

From endothelial cell metabolism

eNOS uncoupling eNOS activation

inhibition of Wnt5a and JNK signaling

[70,91]

[72]*

Oxidative stress – ROS/RNS Antioxidant defense stimulation

corosolic acid

d-chiro inositol

isoflavone Kakkalide

C-peptide activation of AMPKα

[53]

[54]

[54]*

[109]

Acetylation of p66Shc under HG
conditions and

ROS production

Sirt1-regulated p66Shc deacetylation on lysine 81

Pin1 gene silencing

[40]

[107]*

HBP AMPK [92]

gene expression of lysyl oxidase
and endothelin-1

NF-kB, AP-1 [67]*

autophagy natural flavonol Ampelopsin [87]*

apoptosis C-peptide activation of AMPKα

Kv1.5 suppression

[109]

[108]

nuclear translocation of NF-κB p65 Pin1 gene silencing [107]*

Table 1: Mitochondrial and endothelial dysfunction in diabetes (*results from human endothelial cells).

From Current Pending Issues to New Research
Directions and Further Innovative Therapeutic
Strategies in Diabetes
The two main malfunctioning targets in diabetes, mitochondria, and

endothelium are currently addressed by strategies aiming both
dysfunction alleviation and a potential therapeutic benefit. An urgent
call is directed towards mitochondrial interventions, which have “the
momentum” now [110].

Among the mitochondria-associated pending issues, the following
have been quoted:

1-The still unknown percentage of mtROS in ECs in vivo, the less
exploited mitochondria networking and crosstalk with other
organelles, and the mitochondrial signaling pathways [3,10,122].
Recently, it was mentioned that disturbance of Ca2+ homeostasis
deserves advanced studies to support the development of novel
therapeutics aiming prevention and medication of insulin resistance
and Type 2 diabetes [123].

2-Pharmacological therapies aiming inhibition of excessive
mitochondrial fission and promotion of the fusion process
[6,10,124,125]. Nowadays, mitochondrial pharmacology emerges as a
distinct area of great expectations in improving/chemoprevention of
mitochondrial dysfunction [126,127]. Precautions should be taken in
therapeutic translation of the pharmacologic drugs; these must be
previously checked for the specific delivery to ECs mitochondria, for
the effects on mtDNA (avoiding its damage), for local efficacy (while
preserving the viability of other vascular cells), for their safety, and
potential side effects [30,117,124,127-130].

3-The metabolomic approach on mitochondrial metabolites outlines
a promising novel direction in diabetes early detection and treatment
[1,34,130].

Related to dysfunctional endothelium, the incompletely understood
issues that may stress promising innovative directions in the diabetes
treatment are:

1. The characterization of endothelial metabolism [131,132]
including by metabolomic approaches [133]. Treatments targeting
perturbations of ECs metabolism are not available now [134]. In this
context, inhibition of ER stress [135] and the use of H2S to balance the
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cells redox system [8,15] are promising directions towards dysfunction
modulation.

2. The necessity to measure endothelial function, focusing on
oxidative stress impact, heme synthesis and heme oxygenase activity
[10,136].

3. The still unclear mechanisms behind the novel coined
“glycoredox” interaction, i.e. the association between the redox
responses and the glycan function [137].

Conclusion
This review discusses the latest insights on diabetes mellitus-

associated vascular endothelial cell dysfunction and highlights the
novel regulatory and controller function of mitochondria. The basic
knowledge provided here may encourage the teamwork of bench side
and bedside scientists to advance into the domain of mitochondrial
medicine, with significant potential for treatment of diabetic vascular
dysfunctions.
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