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Introduction
Aging is a highly complex and multifaceted process with considerable 

inter-individual differences concerning the decay velocities of the various 
physiological functions. Importantly, aging is much more than just 
natural wear and tear, although such alterations may contribute to the 
age-related decline and accelerate functional deterioration. Numerous 
detrimental and often interrelated cell biological, biochemical and 
physiological changes are known that impair the health state and can 
limit lifespan, such as DNA damage, mitochondrial dysfunction, high 
rates of apoptosis and other forms of cell death, telomere attrition, 
decreased hormone secretion and immuno-senescence. This complexity 
indicates a necessity for identifying connections between these processes 
and, especially, to seek for orchestrating mechanisms and regulators 
that decline by age. The circadian multioscillator system and melatonin, 
which is part of the former, display such properties. In the youthful 
organism, they control countless cellular and physiological functions, 
which gradually lose rhythmicity and efficacy by age [1-3].

Inflammatory responses play a substantial part in aging processes 
and strongly contribute to the deteriorations resulting thereof. This 
connection has been given rise to coining the term of inflammaging 
[4,5]. Inflammaging has not only to be seen as an aspect of immuno-
senescence, but its relevance also concerns the inflammation-related 
oxidative and nitrosative/nitrative stress with its numerous effects 
of damage to DNA and mitochondria [3-6]. Moreover, the enhanced 
formation and release of reactive oxygen species and nitric oxide 
initiate vicious cycles based on the mutual communication between 
neurons, astrocytes and microglia [3,6,7]. Another specific aspect of 
inflammaging concerns the Senescence-Associated Secretory Phenotype 
(SASP), which is apparent in mitotically arrested DNA-damaged cells 
that release proinflammatory cytokines and chemokines [6,8-10]. 
Notably, the affected cells are not immune cells in the strict sense, but 
turn into immunologically relevant players, which attract leukocytes, 
especially macrophages, and cause persistent local inflammation. In the 
brain, SASP was observed as a property of DNA-damaged astrocytes, 
which develop neurotoxic properties and stimulate microglia [11,12]. 
An additional, recently discovered aspect of inflammaging concerns its 
relation to the so-called garb-aging, which consists in the contribution 
of inflammatory responses to altered molecules produced by damaged 

or dying cells that have become unable to efficiently eliminate them by 
proteasomal and autophagic processes [13].

Relevance of Low-Grade Neuroinflammation and 
Neuroinflammaging

The processes of inflammaging, which seem to be involved in the 
majority of age-related diseases [14] are of particular significance to 
the brain, because low-grade neuroinflammation strongly contributes 
to aging and is additionally involved in various neurodegenerative 
pathologies [2,6,15]. Moreover, detrimental alterations in the central 
nervous system have countless consequences for peripheral organs, too. 
Neurodegenerative changes also affect the circadian system, thereby 
cause sleep disturbances, which, in turn, promote proinflammatory 
responses [7,16,17]. This role of neuro-inflammation is not only 
relevant to disease progression, but, importantly, also to disease onset. 
In Alzheimer’s Disease (AD), inflammaging has been shown to be 
prodromal to later, more severe manifestations of this pathology [18]. 
This conclusion conforms with other findings that have identified 
brain insulin resistance as an early pro-inflammatory change of AD 
[6,19-23]. Amyloid-β peptides and oligomers further contribute to the 
inflammatory processes by activating microglia [24,25] and causing 
neurons to release pro-inflammatory cytokines and chemokines [26].

With regard to the detrimental and aging-promoting actions of low-
grade brain inflammation, counteracting mechanisms and factors are 
of particular interest. Without wanting to oversimplify the mechanistic 
networks and options of interventions, this short article shall only focus 
on two ubiquitously acting regulators, melatonin and Sirtuin 1 (SIRT1). 
Moreover, these two factors cannot be discussed in a meaningful way 
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Abstract
With regard to the complexity of aging, orchestrating mechanisms that decline by age and influence numerous 

physiological and cell biological processes are of particular interest. The circadian multioscillator system, actions by 
melatonin and Sirtuin 1 (SIRT1) exhibit such properties. Moreover, they are in multiple ways intimately coupled: Melatonin 
formation by the pineal gland depends in mammals on the input by the circadian master clock, the Suprachiasmatic 
Nucleus (SCN). In turn, melatonin feeds back to the SCN, and it also influences cellular oscillators outside the SCN. 
Increasing evidence shows that melatonin induces SIRT1 expression, in the context of aging and of inflammation. Both 
melatonin and SIRT1 are capable of increasing circadian rhythm amplitudes and some melatonergic actions seem to be 
mediated by SIRT1. The circadian system, melatonin and SIRT1 jointly act in a beneficial way in the fields of low-grade 
neuroinflammation, antioxidative protection and support of mitochondrial functions. 
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without appropriately considering their relationships to the circadian 
oscillator system [27]. 

Melatonin in the Brain

Melatonin is usually known as the hormone of the pineal gland, 
which is, however, only the main source of circulating melatonin, but 
not the main site of overall synthesis, since quantities in extrapineal 
sources exceed by orders of magnitude those in the pineal gland 
[1,17]. From the pineal gland, melatonin is released both into the 
circulation and, via the pineal recess, into the third ventricle of the 
brain [28-30]. As melatonin is synthesized and released by the pineal 
gland preferentially at night, the chronobiological information of high 
melatonin is delivered via the circulation primarily to the peripheral 
tissues. Although melatonin can also cross the blood-brain barrier 
and is taken up via the choroid plexus, the direct release into the 
third ventricle has been recently judged to be more important with 
regard to the influence on the hypothalamic circadian master clock, 
the Suprachiasmatic Nucleus (SCN) [29,30]. Additional routes of 
melatonin delivery to the brain are possible via the aqueduct of the 
midbrain into the fourth ventricle, from there via the medial foramen of 
Magendie and the two lateral foramina of Luschka to the subarachnoid 
space [29]. However, in quantitative terms, highest concentrations are 
found in the third ventricle, from where the adjacent SCN pair is easily 
reached [29,30]. Moreover, melatonin is formed in some parts of the 
central nervous system [1,31]. A recent study demonstrated enhanced 
melatonin synthesis in response to inflammation in the cerebellum, 
however, without substantial release to other parts of the brain [32]. 

In mammals, melatonin is mutually interconnected to the SCN, in 
terms of being both an output and an input factor of the master clock 
[33]. The light/dark information that the SCN receives from melanopsin-
containing retinal ganglion cells is transmitted via a neuronal pathway 
to the pineal gland, where melatonin synthesis is mainly stimulated 
by norepinephrine from postganglionic sympathetic fibers, with some 
modulation by other neuronal connections [34]. On the other hand, 
the SCN receives information from melatonin by virtue of a high 
density of melatonin receptors present in this place [1]. Melatonin can 
phase shift circadian rhythms generated in the SCN [1,35], but there 
is additional evidence that it also influences semi-autonomous and 
almost autonomous peripheral and other central oscillators [27,36]. 
Although the mammalian pineal gland also harbors an endogenous 
clock [37], this is sensitive to the input by norepinephrine, and 
melatonin synthesis strongly declines when this input is reduced. 
Therefore, a functional weakening of the SCN, e.g., by reduced light 
transmission or by neurodegeneration, and likewise by degenerative 
impairments of the neural transduction pathway to the pineal gland, 
also lead to a flattening of the melatonin rhythm in the pineal gland, 
in the circulation and, expectably, in the third ventricle [2,27]. In fact, 
aging is typically associated with functional losses of the circadian 
system. This concerns the rhythm amplitudes in both the SCN [38] 
and numerous peripheral clocks [39]. In some oscillators, amplitudes 
are reduced, in others shifted and, thus, more poorly coupled, whereas 
some are only moderately affected. In other peripheral clocks, overt 
rhythmicity appears to be completely lost, but can be reactivated by 
appropriate stimuli [39]. Reductions of nocturnal melatonin levels are 
typically observed during aging, but also occur in numerous diseases 
and disorders of different etiologies [2,40]. The decrease in pineal and 
circulating melatonin levels is particularly obvious in neurodegenerative 
diseases and, in these cases, clearly associated with SCN dysfunction. 
In AD, melatonin levels are not only reduced, but the remaining small 
maxima also dysphased and temporally strongly scattered [41]. In 

post-mortem pineals of AD patients, the melatonin rhythm seemed 
to be completely lost, whereas this rhythmicity was clearly preserved 
in age-matched controls [42]. As a consequence, age- or disease-
related reductions of melatonin signify the loss of an important 
orchestrating regulator molecule that displays numerous beneficial 
actions. These concern antioxidant, antiexcitatory, anti-inflammatory, 
and antifibrillogenic effects [1-3,6,27,43-46], in addition to the losses 
in coordinative functions within the circadian system [1]. With regard 
to neuroinflammation, the antiexcitatory, mitochondria-protective and 
activation of microglia suppressing effects are of particular importance. 
Moreover, recent findings concerning an increase of α-secretase activity 
in cells overexpressing human β-Amyloid Precursor Protein (βAPP) 
to generate the non-amyloidogenic and neuroprotective fragment 
sAPPα [47] and the inhibition of the amyloidogenic β- and γ-secretases 
[48] indicate additional neuroprotective properties. Generally, 
neuroprotection belongs to the most amply documented actions of 
melatonin, which have been studied under various conditions and 
multiply reviewed, e.g., in refs. [1,6,31,43,44,49-53].

Relationship of Melatonin to Sirtuin 1 and Consequences to 
Circadian Amplitudes

Investigators have mostly regarded the beneficial effects of 
melatonin from a non-dynamic point of view, which would, however, 
be important with regard to its role in the circadian system. Circadian 
rhythmicity itself contributes to protection against damage by free 
radicals and mitochondrial malfunction [54]. Nevertheless, melatonin 
can act both directly on cellular processes that are susceptible to 
melatonergic signaling and indirectly via modulation of circadian 
oscillators [36]. Changes in the expression of circadian core oscillator 
components by melatonin have been repeatedly observed [36] and 
melatonin-deficient mice exhibited flattened, almost undetectable 
variations of such components, contrary to well-pronounced rhythms 
in melatonin-proficient strains [55,56]. These findings strongly indicate 
that melatonin represents an amplitude-enhancing regulator in the 
circadian system [36]. 

The modes by which melatonin exerts these amplitude-enhancing 
effects on oscillators has remained for quite some time rather unclear. 
Although one of the melatonergic signaling pathways, that of PKC-
dependent ERK1/2 activation [57], has been shown to be decisive for 
phase shifting of circadian oscillations [58], this may not yet explain the 
increases of rhythm amplitudes. Recent data on the relationship between 
melatonin and SIRT1 may provide a link to this problem. Initially, this 
connection was largely overlooked, because studies in cancer cells or 
tissue revealed strong reductions of SIRT1 expression by melatonin. 
However, melatonin behaves entirely differently in nontumor cells. 
Especially in the context of aging, melatonin was shown to upregulate 
SIRT1 expression in various models, as recently summarized [27]. This 
discrepancy is explained by tumor-cell specific epigenetic silencing of 
core oscillator components that display tumor suppressor properties, 
whereas these components undergo normal cycling in non-tumor cells 
[27]. 

SIRT1 has been shown to play an important role in circadian 
oscillators. The profound chronobiological actions of the protein 
deacetylase SIRT1 were discovered in the group of P. Sassone-Corsi [59-
61]. In brief, SIRT1 was identified as an accessory oscillator component. 
Basis of its cycling activity is the binding of the core oscillator 
components BMAL1 and CLOCK to an E-box in the promoter of the 
nicotinamide phosphoribosyltransferase (Nampt) gene. The resulting 
cyclicity in NAMPT protein expression leads to a rhythm in NAD+ 



Citation: Hardeland R (2018) Neuroinflammation and Aging: Significance of Declining Circadian Functions and Melatonin. Biochem Physiol 7: 243. 
doi: 10.4172/2168-9652.1000243

Page 3 of 5

Volume 7 • Issue 3 • 1000243
Biochem Physiol, an open access journal
ISSN: 2168-9652

reducing low-grade neuro-inflammation and for improving health 
and life quality in elderly subjects. As a consequence, the hypothesis 
should be experimentally examined that, in aging mammals, 
exogenous melatonin not only elevates the levels of SIRT1, but that 
this upregulation also increases circadian amplitudes, which may also 
influence the rhythmicity of endogenous melatonin. With regard to 

concentration, which drives the activities of various sirtuins which use 
NAD+ as a substrate and activator. Notably, rhythmic expression of 
SIRT1 is not required, because the decisive parameter is SIRT1 activity 
rather than protein concentration. 

An important and, in the beginning, surprising property of SIRT1 
is its capability of enhancing circadian oscillation amplitudes. This 
has been explained in two different ways, (1) By physical interaction 
of SIRT1 with the BMAL1/CLOCK heterodimer; and (2) By SIRT1-
dependent deacetylation of PGC-1α (peroxisome proliferator-activated 
receptor-γ coactivator-1α), binding of deacetylated PGC-1α to RORα 
(retinoic acid receptor-related orphan receptor-α), an activator at the 
ROR response elements in the promoters of the Bmal1 and Clock genes 
[38]. Regarding these two possibilities, differences may exist between 
the various cellular oscillators in central and peripheral tissues. An 
important aspect of aging is the observed senescence-associated decline 
of SIRT1 expression [17,27,38]. The above-mentioned upregulation 
of SIRT1 expression by melatonin in the context of aging [27], thus, 
indicates a mode by which exogenous melatonin might increase 
circadian amplitudes indirectly by re-initiating enhanced SIRT1 
expression. Whether melatonin also upregulates other sirtuin subforms, 
in particular, the mitochondrially located SIRT3 and the constitutively 
chromatin-associated SIRT6, would be of great interest, but would still 
require a broader experimental basis. Both SIRT3 and SIRT6 are driven 
by the NAD+ cycle and transmit circadian information [62,63], but do 
not seem to feed back to the core oscillator components.

Conclusion
A concept of jointly increasing melatonin and SIRT1 levels is 

highly attractive in gerontological terms, especially with regard to 
neuroinflammation. Melatonin, which is very short-lived in the 
circulation because of a half-life mostly in the range of 20-30 min, may 
induce more persistent effects by upregulating SIRT1, which, as a protein, 
should have a considerably longer half-life. In cultured glomerular 
mesangial cells, the half-life of SIRT1 was about 8 h [64]. Under certain 
conditions and in certain cells, this may be shortened by stimuli that 
enhance SIRT1 ubiquitinylation, followed by proteasomal degradation 
[64]. Corresponding data in brain tissue would be required for a definite 
judgment, but the half-life of SIRT1 in neurons will be, with some 
likelihood, in the range of several hours and, therefore, much longer 
than that of melatonin. Independently of the rather moderate effects of 
melatonin on sleep maintenance [2], daily repeated and appropriately 
timed application of this hormone may improve, via SIRT1, circadian 
rhythms in elderly patients, as far as the decline in the circadian system 
has not been caused by irreversible neurodegeneration. Moreover, the 
antioxidant, mitochondria-protective and anti-inflammatory actions 
of melatonin might be complemented and enhanced by corresponding 
actions of SIRT1, which displays beneficial effects in the same fields and 
may, according to recent data, partially mediate actions by melatonin 
[65-74] (Figure 1). Anti-inflammatory effects of SIRT1 deserve further 
attention and extension towards studies on levels of proinflammatory 
cytokines in the brain would be required, especially concerning TNF-α, 
IL-2 and IL-6. To date, most pertinent information has been based 
on the application of powerful proinflammatory agents such as LPS 
(bacterial lipopolysaccharide) in combination with sirtuin activators 
and inhibitors, whereas investigations on upregulation of SIRT1 in the 
otherwise non-compromised aging brain, along with measurements of 
cytokine levels, are urgently desired. Nevertheless, the already available 
data on neuroprotection and anti-inflammatory properties of SIRT1 
are encouraging [75]. The enhancement of melatonin, SIRT1 activity 
and, thereby, circadian amplitudes seems to be a worth-while aim for 

Figure 1: Connections between the circadian system, melatonin and Sirtuin 1 
(SIRT1) and their relevance in the reduction of inflammation and inflammaging. 
A. Simplified scheme to illustrate the relationships between the circadian 
master clock (SCN), peripheral oscillators, melatonin and SIRT1 in a youthful 
organism. Thickness of arrows indicates differences in coupling strength. 
While some peripheral oscillators are tightly coupled to the SCN, others are 
less strongly coupled or almost independent; melatonin influences some, but 
not necessarily all peripheral oscillators directly, and feeds back to the SCN. 
B. Deviations caused by aging. Melatonin and SIRT1 are reduced and the 
various oscillators are differently affected. Additional deviations such as phase 
shifts have not been incorporated in the scheme. C. A mechanism of circadian 
amplitude enhancement by SIRT1, as demonstrated for the SCN oscillator [38]. 
D. The joint actions of melatonin and SIRT1 in reducing inflammation. Many 
anti-inflammatory effects are shared by melatonin and SIRT1. In a number 
of cases, effects of melatonin have been suppressed by SIRT1 inhibitors 
or knockdown, indicating a mediation of these actions by SIRT1. Additional 
actions of melatonin concerning reduction of Aβ peptides have not been 
considered here. For further details see refs. [1,3,6,16,17,27,37,38,60,63,75]. 
Abbreviations: BMAL1: Brain and Muscle Aryl Hydrocarbon Receptor Nuclear 
Translocator-like 1; CLOCK: Circadian Locomotor Output Cycles Kaput; COX-
2: Cyclooxygenase 2; HMGB1: High-Mobility Group Box-1; iNOS: inducible NO 
Synthase; MPx, Myeloperoxidase; mTORC1: mechanistic Target of Rapamycin 
Receptor Complex 1; NAMPT, Nicotinamide phosphoribosyltransferase; NF-
κB: Nuclear Factor κB; NICD: Intracellular Domain of Notch; NLRP3: NLR 
Family Pyrin Domain containing 3; nNOS: neuronal NO Synthase; Nox: 
NADPH oxidase; Nrf2: Nuclear factor erythroid 2-related factor 2; PGC-1α: 
Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α; RORα: Retinoic 
acid receptor-related Orphan Receptor α; RORE: ROR Response Element; 
SCN: Suprachiasmatic Nucleus; TXNIP: Thioredoxin- Interacting Protein.
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the anti-inflammatory actions of both melatonin and SIRT1 and to 
the circadian control of several immunological functions, concomitant 
improvements of the three orchestrating regulators, melatonin, SIRT1 
and the circadian system, may reduce aging-related inflammation and 
enhance physiological functioning.
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