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Heart Failure Treatment
Myocardial infarction (MI), or heart attack, is caused by the

blockage of blood flow in the heart, which reduces oxygen levels,
damages tissues (ischemia) and kills close to one billion
cardiomyocytes (infarction) [1]. Fibroblasts then migrate into the
infarcted area where they proliferate to create a cardiomyocyte-
depleted scar that cannot contribute to the electrophysiologically-
driven contractions of the heart. This often causes HF leading to
fatigue, peripheral edema, or even death. To find more effective
therapies for HF, we need to improve our understanding of its
pathophysiology and develop new approaches to treating it.

Cell-replacement therapy has emerged as a novel approach to treat
HF. This approach relies on the theory that after MI or in HF, lost
cardiomyocytes can be replaced by adding either new cardiomyocytes
or a potential source of cardiomyocytes such as stem cells. To find the
most effective approach, researchers have tested several types of stem
cells including skeletal myoblasts [2], cardiac progenitor cells [3], and
mesenchymal stem cells from bone marrow [4]. However, they have
only been modestly successful because the beneficial effects are mainly
mediated by indirect paracrine mechanisms: stem cells do not
transdifferentiate into cardiomyocytes in-vivo and the number of stem
cells retained in the heart after delivery is disappointingly low [5].
Fortunately, cell-replacement therapy for HF using pluripotent stem-
cell-derived cardiomyocytes showed more promising results in rodents
and non-human primates because they integrate and electrically
couple with the healthy myocardium [6-8]. However, technologies
involving stem-cell-derived cardiomyocytes must be further optimized
before they can effectively treat HF. Specifically, we need to find
methods that improve the efficiency and consistency of cardiomyocyte
differentiation in large scale, their survival in disease conditions, their
integration into cardiac tissue, and their resistance to autoimmune
rejection.

Recently, Srivastava laboratory and others demonstrated an
alternative approach-transdifferentiation of resident cardiac fibroblasts
(CFs) into cardiomyocytes, called direct cardiac reprogramming. They
initially illustrated that CFs transdifferentiate into a more cardiac-like
state both in-vitro and in-vivo when treated with a combination of
three transcription factors associated with cardiogenesis-Gata4, Mef2c,
and Tbx5 (GMT) [9]. Building on this technology, subsequent reports
have shown that various combinations of transcription factors, and
microRNAs and other combinations [10-13]. However, the efficiency
of reprogramming and extent of cardiac-specific gene expression and
morphology, such as sarcomere organization, have been consistently
better in-vivo than in-vitro [14,15].

In fact, reprogramming CFs in-vivo improved cardiac function after
injury (e.g., ejection fraction, cardiac output, and stroke volume) [14,
15]. While reprogramming the pool of endogenous cardiac fibroblasts

into cardiomyocyte-like cells is a promising approach for cardiac
regeneration, the methods must be refined to enhance the efficiency
and quality of their reprogramming. Thus, we must understand the
mechanism by which the reprogramming factors fundamentally alter
the cell state. This work is currently conducted by various groups
around the world to identify the barriers for cell transdifferentiation.
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