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Introduction
Bovine Viral Diarrhoea (BVD), is a major contributor to bovine 

respiratory disease and one of the most common diseases in cattle [1,2]. 
BVD virus is a pestivirus in the Flaviviridae family and has a worldwide 
distribution. Once BVD virus enters a herd, viral spread is rapid and 
full herd-infection can result within weeks. Economic implications of 
an outbreak are severe as diseased animals perform sub-optimally and 
decrease on-farm efficiency and profitability through waste feed, labor 
and increased veterinary costs. Delayed diagnosis of viral infections in 
animals can also lead to animal death. 

European farmers €300 per cow in treatment/isolation costs 
[3]. Likewise, in the US this disease has a total economic cost to the 
cattle industry of over US $2 billion annually. Early identification of 
respiratory diseases are essential to achieve effective control, in that, 
appropriate intervention with removal from the herd or vaccines 
treatments can reduce clinical signs and reduce the number of carrier 
animals present within a herd [3]. To date, only a few European 
countries have achieved total eradication and in many countries 
national schemes have not been initiated as they are deemed too cost-
prohibitive and time-consuming.

Detection of BVD is currently performed using high-end analytical 
instrumentation including: Reverse Transcription Polymerase Chain 
Reaction (RT-PCR), immunohistochemistry or Enzyme Linked 
Immunosorbant Assay (ELISA) by targeting whole BVD virus, specific 
antigen epitopes or specific antibodies [4-6]. Globally, these tests have 
sufficient sensitivity but can be time-consuming (a few hours). They 
also require dedicated laboratories, skilled personnel and have high 
instrument ownership and maintenance costs. Rapid detection and 
identification of BVD virus is critical for herd protection in order to 
prevent costly herd outbreaks. However current diagnostic approaches 
(based on laboratory-based methods) can slow down this diagnostic 

process as samples must be first sent to the designated laboratory; 
once received and analyzed results must then be communicated back 
to the key stakeholders (farmers and veterinarians), a process that 
can take days to weeks. These delays can lead to uncontrolled spread 
of the virus within a herd. Consequently there is now a growing need 
to develop new rapid diagnostic tools that will deliver rapid and early 
identification (<30 minutes) of animal disease state on-farm.

Electrochemical biosensors, though label-free detection 
methods, constitute a promising group of sensing devices that allow 
high sensitivity, short analysis times, affordability, miniaturized 
platforms, with low sample consumption and the possibility for 
measurements in complex samples [7]. Amperometry, potentiometry 
and electrochemical impedance spectroscopy (EIS) are examples of 
electrochemical techniques that have been used in immunosensors 
[8]. Of these, EIS represents a powerful method for the detection of 
target analyte at functionalized sensor surface via an immunochemical 
interaction in a label free manner, i.e., without the need for further 
costly or complex labeling techniques [9-11]. EIS uses periodic small 
AC voltage amplitudes that are applied to an electrode and a change 
of the electrode impedance is measured and can be correlated to the 
amount of analyte binding [12,13].
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Recent developments in fabrication of robust and reproducible 
nanoelectrodes have opened the door to a new and exciting area of 
electrochemistry. Compared to traditional macroelectrodes, nanoscale 
electrodes, such as those based on single nanowires, have tremendous 
potential when employed in electrochemical analysis due to enhanced 
sensitivity. This enhancement arises from increased mass transport to the 
electrode (via radial diffusion) and low background charging currents 
(due to reduced surface area) relative to macroscale electrodes [10,14]. 
Reproducible wafer-scale fabrication (using nanoelectronic fabrication 
techniques) of fully integrated nanowire-based electrochemical devices 
have been previously developed [15,16] and the applicability of these 
devices for highly sensitive detection of (bio) molecules including: 
glucose and hydrogen peroxide [17], heavy metals [18] and explosives 
[19] have been demonstrated. These discrete nanowire sensor devices 
exhibit a 100-10,000 fold increase (analyte dependent) in sensitivity 
and can undertake analysis in milliseconds compared to minutes for 
commercial state-of-the-art electrodes [20,21].

To date, field effect transistor based semiconductor nanowire sensors 
have been successfully employed for detection of key biomolecules 
including DNA, viruses and disease biomarkers [22-24]. Although 
elegant, these approaches are limited in that they require application of 
a high back gate voltage (up to 40V DC), and many of their attributes 
such as reproducibility, product uniformity, potential for scaling 
up and cost effectiveness are not very well known [25]. Combining 
electrochemical impedance techniques with highly reproducible gold 
nanoelectrodes could, therefore, enable the development of new up-
stream diagnostic devices. However, a critical challenge to developing 
such devices is that label-free electrochemical based detection of 
biomolecule binding events at the discrete nanostructures in buffer or 
bio-media has yet to be demonstrated.

In this paper, we address this challenge and demonstrate the first 
on-chip nanowire immunosensor device for the electrochemical-
based detection of BVD antibodies in serum. Nanowires are fabricated 
using reproducible top-down nanofabrication approaches used in 
the nanoelectronics industry. Capture biomolecules are covalently 
immobilized onto an electrodeposited polymer layer pre-deposited 
on a nanowire sensor and each step of the modifying process is 
characterized using cyclic voltammetry and EIS. Immunoassays are 
developed using a bovine serum albumin antibody/antigen model 
system. The immunosensor is first applied to the detection of anti-BSA 
antibodies in buffer and then to BVD antibodies in both buffer and 
diluted serum. Finally the sensor is challenged to discriminate between 
disease positive and disease negative serum samples. BVD assay 
times are typically ~20 minutes demonstrating the potential of these 
nanowire electrochemical immunosensors for use in future portable 
devices required for on-farm diagnostic applications.

Identification of the agent

BVDV is a pestivirus in the family Flaviviridae and is closely related 
to classical swine fever and ovine border disease viruses. The two 
genotypes (types 1 and 2) are classified as separate species in the genus 
Pestivirus. A third putative genotype, BVDV type 3, has also recently 
been proposed. Although both cytopathic and non-cytopathic biotypes 
of BVDV type 1 and type 2 exist, non-cytopathic strains are usually 
encountered in field infections and are the main focus of diagnostic 
virus isolation in cell cultures. PI animals can be readily identified 
by a variety of methods aimed to detect viral antigens or viral RNA 
directly in blood and tissues. Virus can also be isolated by inoculation 
of specimens onto susceptible cell cultures followed by immune-
labelling methods to detect the replication of the virus in the cultures. 

Persistence of virus infection should be confirmed by resampling after 
an interval of at least 3 weeks, when virus will again be detected. PI 
animals are usually seronegative. Viraemia in acute cases is transient 
and difficult to detect. Virus isolation in semen from bulls that are 
acutely or persistently infected requires special attention to specimen 
transport and testing. RNA detection assays are particularly useful 
because they are rapid, have very high sensitivity and do not depend on 
the use of cell cultures.

Serological tests

Acute infection with BVDV is best confirmed by demonstrating 
seroconversion using sequential paired samples, ideally from several 
animals in the group. The testing of paired (acute and convalescent 
samples) should be done a minimum of 21 days apart and samples 
should be tested concurrently in the same assay. Enzyme-linked 
immunosorbent assays and the virus neutralisation test are the most 
widely used.

Requirements for vaccines

There is no standard vaccine for BVD, but a number of commercial 
preparations are available. An ideal vaccine should be able to prevent 
transplacental infection in pregnant cows. Modified live virus vaccine 
should not be administered to pregnant cattle (or to their sucking 
calves) due to the risk of transplacental infection. Live vaccines that 
contain cytopathic strains of BVDV present a risk of inducing mucosal 
disease in PI animals. Inactivated viral vaccines are safe and can be 
given to any class of animal but generally require booster vaccinations. 
BVDV is a particularly important hazard to the manufacture of vaccines 
and biological products for other diseases due to the high frequency of 
contamination of batches of fetal calf serum used as a culture medium 
supplement.

Materials and Methods
Materials

O-aminobenzoic acid (o-ABA), N-hydroxysuccinimide (NHS), 
N-ethyl-N-(dimethylaminopropyl)-carbodiimide (EDC), phosphate 
buffered saline (PBS) solution, Dubelcco’s phosphate buffered saline 
10 × (PBS10) solution, tween 20, sodium chloride (NaCl), sodium 
hydroxide (NaOH), bovine serum albumin (BSA), anti-bovine albumin 
antibody (BSA Ab), and ferrocene monocarboxylic (FcCOOH) were 
purchased from Sigma-Aldrich. The acetate buffer (10 mM; pH 4) and 
ethanolamine-HCl (1mM) were obtained from Sierra Sensors GmbH 
(Germany). Deionized water (18.2 MΩ cm) was obtained using an 
ELGA Pure Lab Ultra system. BVD virus and monoclonal antibodies 
BVD specific to the envelop glycoprotein (Erns) of the virus were 
purchased from Animal and Plant Health Agency (APHA Scientific, 
UK). All reagents were used as received. Positive and negative bovine 
serum samples were provided by Teagascbiobank (Moorepark, 
Ireland).

Methods

Fully integrated nanowire based electrode fabrication: Gold 
nanowires electrodes, on-chip gold counter and platinum pseudo-
reference electrodes were fabricated on wafer-scale silicon substrates 
using hybrid e-beam/optical lithography, metaldeposition and lift-off 
techniques, as previously described in detail by Wahl et al. [19]. Before 
use, chips were cleaned using a mixed solvent clean process and dried 
under a stream of nitrogen.

Electrode modification: A schematic diagram of the immunosensor 
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is shown in Figure 1. All the modification steps were performed in a 
bespoke electrochemical cell. On-chip nanowire electrodes were first 
modified using electrodeposited o-ABA. The electrodeposition of the 
polymer (10 mM o-ABA in 10mM acetate buffer pH 4) was undertaken 
by cyclic voltammetry (25 cycles) in the applied potential ranging of 
-0.2 to 0.8V (versus on-chip pseudo platinum electrode) at a scan rate 
of 50 mV/s followed by careful rinsing of the electrodes with DI water to 
remove any remaining monomers. The carboxylic terminated polymer 
was activated using a fresh mixture of EDC/NHS (10 mM/10 mM) for 
30 min. Then, capture molecules, either BSA (10 mg/mL) or BVD virus 
(100 µg/mL), were covalently attached to the surface (3 hours at 4°C). 
Following this immobilization, the electrodes were well rinsed with 
PBS10 solution containing 0.1% Tween-20 (PBS10-T), PBS and DI 
water to remove any unbound proteins and the un-reacted active sites 
were blocked by immersing in ethanolamine for 30 min.

Finally, the antigen modified electrodes were exposed to known 
concentrations of antibody solution in PBS or to 1% diluted serum 
samples for 20 min at room temperature. The electrodes were rinsed 
carefully with PBS10-T, NaCl (1 M), PBS, NaOH (10 mM) and DI 
water to remove non-specifically bound target biomolecules prior to 
measurement.

Electrochemical measurements: Electrochemical experiments 
were carried out using an Autolab Potentiostat/ Galvanostat 
PGSTAT128N (Metrohm Ltd, Utrecht, The Netherlands) controlled 
by the Autolab NOVA software. All experiments employed a standard 
three-electrode cell configuration using a single gold nanowire as the 
working electrode, versus the on-chip gold counter electrode and the 
on-chip platinum pseudo-reference electrode.

Cyclic voltammetry (CV) and faradaic electrochemical impedance 
spectroscopy (EIS) were performed in a 10 mM PBS solution (pH = 7.4) 
containing 1 mMFcCOOH. For CV, the potential was cycled from - 0.2 
to 0.6V (versus on-chip platinum pseudo reference electrode) at a scan 
rate of 100 mV/s. The impedance spectra were recorded in a frequency 
range of 100 mHz to 100 kHz at 150 mV, the equilibrium potential of 
the FcCOOH redox couple. The amplitude of the alternating voltage 

was 5 mV. All experiments were performed at room temperature in a 
Faraday cage.

ELISA measurements: ELISA tests were performed using a 
commercial BVDV p80 Ab detection kit for the detection of specific 
antibodies directed to bovine viral diarrhea virus (IDEXX, UK) 
following the short (1 h) protocol. Briefly, the p80 modified ELISA 
plate of the kit was exposed to the serum samples diluted (10%) in 
the commercial dilution solution. Following 1h incubation at room 
temperature, plates were rinsed with diluted commercial wash buffer 
using an ELISA plate washer (DIASource, Belgium). Then the conjugate 
was diluted (with the provided solution) and incubated in the plate for 
30 min at room temperature. After washing, a chromogenic substrate 
was added for 20 min in dark room at room temperature. Finally, the 
reaction revealing the conjugate was stopped using the commercial 
stop solution and the absorbance was read at 450 nm using an ELISA 
plate reader (DIASource, Belgium). Blank and controls using positive 
and negative provided control solutions were also performed. All 
samples were analyzed in triplicate.

Results and Discussion
Characterization of gold nanowire electrode

Fabricated devices were mounted in an electrochemical cell set-
up (Figure 2A) and contain twelve separate electron-beam fields 
containing nanowire electrodes, an on-chip gold counter electrode, 
an on-chip platinum pseudo-reference electrode and peripheral 
contact pads to facilitate direct electrical and electrochemical probing. 
Nanowire electrodes were 700 nm width and 45 µm long (Figure 
2B). Electrochemical functionality of the nanowire electrode was 
characterized using cyclic voltammetry in presence of a redox probe. 
Figure 2C shows a typical voltammogram obtained in 1 mMFcCOOH 
with an intensity current of 2 nA, at a single gold nanowire electrode. 
As expected, a quasi-steady-state response was observed, typical of 
single electron oxidation occurring at a discrete nanowire [26]. The 
magnitude of the current confirms that electrochemistry only occurs at 

Figure 1: Schematic of an immunoassay at a single gold nanowire. A polymer 
layer is first electrodeposited at a single nanowire electrode. Capture biomolecule, 
virus or antigens, are then covalently attached on the electrodeposited polymer 
layer and used to specifically capture and bind to target antibodies which are 
subsequently detected electrochemically.
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Figure 2: (A) Photograph of the electrochemical cell and the chip containing 
12 electrodes and on chip platinum reference and gold counter electrodes; (B) 
Optical photography of a single gold nanowire of 700 nm width; (C) Typical 
Cyclic voltammogram with an applied potential ranging from -0.2 to 0.5 V 
obtained for a single nanowire in 1 mMFcCOOH in 10 mM PBS (pH 7.4).
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detection of 10 µg/mL BSA Ab are presented in Figures 3B and 3C, 
respectively.

The CV of the cleaned gold nanowire electrode shows a typical 
quasi-steady-state response characteristic of the redox couple (Figure 
3B, curve a) and the associated nyquist spectrum (Figure 3C, curve 
a) displays a semi-circle with an estimated charge transfer resistance 
around 58 ± 16 MΩ. After the electrodeposition of o-ABA layer, the 
current intensity in the CV decreases (Figure 3B, curve b) while nyquist 
semi-circle increases (Figure 3C, curve b). This indicates an increase in 
charge transfer resistance and in the global capacitance at the nanowire. 
These changes may arise from the electrodeposited polymer partially 
blocking the electrode and therefore limiting the electron transfer from 
FcCOOH to the electrode. The negative charges of the carboxylate 
terminated polymer can also induce an electrostatic repulsion of bulk 
FcCOOH ions. Covalent immobilization of the BSA is undertaken 
though the amide bond formed by the EDC-NHS coupling. No major 
change is visible on the voltammogram (Figure 3B, curve c) but the 
nyquist spectrum (Figure 3C, curve c) reveals a decrease in the semi-
circle. This change could be attributed to the covalent immobilization 
of BSA at the carboxylate activated sites of the polymer rather than 
the simple adsorption on the electrode as the accessible surface for 
the oxidation and reduction of the FcCOOH remains constant. This 
decrease in measured impedance could be attributed to a decrease in 
charge density following binding (arising from displacement of solvent 
counter ions) and an increase in the thickness of the modifying layer 
leading to a decrease in the global capacitance at the nanowire. After 
ethanolamine blocking step, no significant difference (from the BSA 
curve) is visible in the CV (Figure 3B, curve d) or the nyquist spectrum 
(Figure 3C, curve d) suggesting that BSA is bound to all accessible 
active sites.

For the immunologic detection, anti-BSA antibodies (BSA Ab; 
10 µg/mL) in buffer solution (PBS; pH 7.4) are deposited on the fully 
blocked BSA-modified nanowire and allowed to incubate for 20 min. 
The binding of BSA Ab leads to a strong decrease in current intensity 
(Figure 3B, curve e), and an increase in the impedance (Figure 3C, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (A) Schematic of the layer-by-layer build up on a nanowire sensor for the BSA antigen/antibody model system; (B) Cyclic 
Voltammograms and (C) Nyquist plots of (a) pristine gold nanowire electrode;(b) o-ABA modified electrode; (c) BSA (10 mg/mL) modified 
electrode; (d) ethanolamine blocked electrode; (e) Antibody BSA binding (10 µg/mL). Solution composition: 1 mMFcCOOH in 10 mM PBS. 
CV scan rate: 100 mVs−1. EIS frequency range: 0.1 Hz to 100 kHz; E=150 mV and ΔV=5 mV.

the nanowire electrodes and the passivation layer successfully prevents 
unwanted electrochemistry occurring at on-chip metallisation. 
Nanowire devices that exhibited lower or no electrochemical current 
were discarded and not used for further experiments as they revealed 
a defect in the nanowire or an incomplete removal of the passivation 
layer.

Application of the biofunctionnalization process to a model 
BSA antigen-antibody

Electrodeposition of o-ABA: The modification process is based on 
the electrodeposition of an o-ABA polymer layer which is then used 
to immobilize the antigen onto a single gold nanowire electrode. Poly 
o-aminobenzoic acid is selected since it is a carboxyl functionalized 
aniline polymer capable of self-doping. This bio-compatible polymer 
is emerging as a promising polyaniline derivative for biosensor 
applications. After polymerization, the free carboxylic acid functional 
groups can be used as a matrix material for subsequent immobilization 
though covalent binding with biomolecules such as proteins and 
antibodies [27-31].

A typical CV obtained for the electrodeposition of o-ABA on the 
single nanowire. The first cycle of the electrodeposition displays an 
oxidative peak around 0.5 V corresponding to the formation of the 
polymer on the gold electrode. This peak disappears with subsequent 
scans and a small reversible peak around 0 V, characteristic of the 
doping-dedoping of the polymer, and a second dedoping peak at 0.3 
V in the cathodic scan appear with increasing number of cycles. The 
emergence of these peaks confirms the electrodeposition of o-ABA on 
the gold surface [31].

Detection of BSA antibody in buffer: To confirm suitability of 
on-chip nanowires for immunoassay applications, the immobilization 
process and the immunologic detection of BSA antibody onto the 
o-ABA modified nanowire was first demonstrated. Figure 3A shows 
a schematic of the layer-by-layer build up on a nanowire surface. Each 
step of the assays was characterized using both cyclic voltammetry 
and impedance spectroscopy. The CV and the Nyquist spectra for the 



Citation: Montrose A, Creedon N, Sayers R, Barry S, O’riordan A (2015) Novel Single Gold Nanowire-based Electrochemical Immunosensor for Rapid 
Detection of Bovine Viral Diarrhoea Antibodies in Serum. J Biosens Bioelectron 6: 174. doi:10.4172/2155-6210.1000174

Page 5 of 7

Volume 6 • Issue 3 • 1000174
J Biosens Bioelectron
ISSN: 2155-6210 JBSBE, an open access journal 

curve e). These changes may be attributed to the anti-BSA orienting 
in a manner so as to block the FcCOOH from reaching the electrode 
surface preventing electronic transfer to the electrode.

The detection of anti-BSA antibodies (10 µg/mL) in buffer in 20 
min in this way demonstrates the potential of these nanowire sensors 
for use as rapid and label-free immunosensors. To confirm this 
potential, electrochemical-based detection of BVD antibodies in both 
buffer and diluted serum samples using virus as capture biomolecules 
was then assessed.

Detection of BVD antibodies in buffer

The functionalization process previously described was then 
applied to the covalent immobilization of BVD virus (100 µg/mL) 
onto the o-ABA polymer electrodeposited on the nanowire electrode. 
Figure 4A shows a schematic of the layer-by-layer build up on a 
nanowire surface. The detection of BVD antibodies (BVD Ab) is firstly 
performed in buffer (PBS; pH 7.4) for a concentration of 10 µg/mL. 
As previously described, CV and nyquist spectra were recorded in 
presence of FcCOOH as redox probe (Figures 4B and 4C).

O-ABA was again electrodeposited onto pristine gold nanowires 
(Figure 4B and 4C, curve a) leading to a decrease in electron transfer as 
expected (Figures 4B and 4C, curve b). BVD virus was then immobilized 
on the o-ABA modified electrode resulting in an important decrease 
in the current intensity (Figure 4B, curve c) and an increase in the 
semi-circle diameter i.e. increase of the charge transfer resistance and 
the global capacitance (Figure 4C, curve c). These changes are mainly 
attributed to the large BVD virus (40-60 nm), capture molecule, 
attached on the nanowire preventing FcCOOH to reach the electrode 
surface. Following the blocking step, slight changes are visible but the 
CV and nyquist spectrum remain very similar to the BVD virus layer 
(Figures 4B and 4C, curve d).

After binding of the antibodies to the multiple epitopes on the 

peptide envelop of the virus, a strong increase in the current intensity 
is observed in CV (Figure 4B, curve e) with a corresponding decrease 
in the measured impedance (Figure 4C, curve e). This suggests that 
the binding may cause a re-orientation or re-arrangement of the 
virus layer forming channels between virus particles through which 
FcCOOH molecules may pass to reach the electrode. It also suggests 
that electronic transfer between BVD antibody and the electrode may 
be occurring and probably a combination of both.

After successful demonstration of BVD antibodies detection in 
buffer, the BVD virus modified immunosensor was then applied to 
detection of BVD antibody in bovine serum of known disease state i.e. 
with BVD antibody positive and negative, obtained from cows.

Detection of BVD antibodies in serum

To evaluate the behavior of the electrochemical nanowire-based 
immunosensor in complex matrices, a serum dilution of 1% was 
chosen. This dilution corresponds to the maximum dilution permitting 
the BVD Antibody detection with the ELISA after 1 h incubation of 
the positive infected serum sample. The CV and nyquist spectra 
were recorded in presence of FcCOOH for each step of the virus 
immobilization and the detection of BDV antibodies in 1% positive 
infected serum (Figures 5A and 5B).

As before, immobilization of the BVD virus on the nanowire leads 
to the limitation of electron transfer of FcCOOH to the electrode 
i.e. decrease in current intensity and increase in impedance (Figures 
5A and 5B, curves a-c) with no major changes being observed after 
ethanolamine blocking step (Figures 5B and 5A, curve d). The BVD 
virus immunosensor was then exposed to 1% positive infected serum 
incubated for 20 min and washed to remove any unbound material. 
The CV and EIS obtained following the binding of BVD antibodies 
from the positive serum evolve in the same way as in buffer i.e. an 
increase in the CV and a decrease in the impedance (Figure 5A and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: (A) Schematic of the layer-by-layer build up on a nanowire sensor for BVD antibody detection; (B) Cyclic Voltammograms and 
(C) Nyquist plots of (a) pristine gold nanowire electrode; (b) o-ABA modified electrode; (c) BVD virus (100 µg/mL) modified electrode; (d) 
ethanolamine blocked electrode; (e)Antibody BVD (10 µg/mL) binding in buffer. Solution composition: 1 mMFcCOOH in 10 mM PBS. CV 
scan rate: 100 mVs−1. EIS frequency range: 0.1 Hz to 100 kHz; E=150 mV and ΔV=5 mV.
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5B, curve e). These changes are attributed to immunologic binding of 
BVD antibodies present in the serum to the virus immobilized on the 
nanowire.

To confirm these results, control experiments were undertaken 
using BVD antibody negative serum samples. Following these control 
experiments, serum positive infected samples aliquots were then 
dispensed on the sensors to (i) confirm bio-functionality and efficacy 
of the virus capture probe and (ii) demonstrate the specificity of the 
sensor against BVD antibodies. Figure 6 presents typical CV and EIS 
obtained first for BVD antibody negative and then for positive serum 
samples on the same immunosensor. Figure 6 presents typical CV and 

EIS obtained first for BVD antibody negative and then for positive 
serum samples on the same immunosensor.

A decrease in charge transfer and an increase in capacitance are 
again observed, following covalent coupling of the BVD virus to the 
gold nanowire and blocking with ethanolamine, compared to pristine 
gold nanowire electrode (Figures 6A and 6B, curves a-d). Incubation 
of negative infected serum sample leads to a decrease in the current 
intensity (Figure 6A, curve e) and an increase in the impedance (Figure 
6B, curve e) indicating a further reduction of electron transfer (versus 
the ethanolamine curve). This result is contrary to those observed 
during BVD Ab binding experiments and suggests the formation of 
a more insulating layer on the electrode further preventing FcCOOH 
molecules from reaching the electrode surface.

Immediately after these assays, BVD antibody positive serum was 
deposited onto nanowire immunosensor and allowed to incubate 
for 20 min. An increase in the current intensity and a decrease in 
the impedance (Figures 6A and 6B, curve f), consistent with results 
presented in Figures 4 and 5, are observed following binding of BVD 
antibodies present in serum samples to the immobilized virus. These 
results strongly suggest that the observed changes in both CV and 
nyquist spectra are attributed to the presence of BVD antibody in sera 
sample. Furthermore, it strengthens the arguments of re-orientation 
or re-arrangement of the virus layer allowing ingress of FcCOOH 
molecules to the electrode when BVD antibodies are bound. Finally, this 
result highlights the fact that immobilized virus are fully functional, not 
degraded during the experiments and demonstrate the specificity of the 
sensors to the BVD antibodies. In all cases, electrochemical results were 
in full agreement with results obtained from the commercial ELISA kit.

The electrochemical based immunologic detection of BVD 
antibodies in 1% serum in 20 min demonstrates the suitability of this 
sensor device for potential use in future on-farm diagnostic devices and 
opens the door for detection of a wide variety of other diseases.

Conclusion
This paper presents the first electrochemical-based on-chip 

nanowire immunosensor device. Using an electrodeposited o-ABA 
to covalently immobilize the capture biomolecules, electrochemical 
immunosensing (10 µg/mL) on the on-chip nanowire is validated in 
buffer using first a model BSA antigen-antibody and then BVD virus-
antibody. The nanowire-based BDV virus immunosensor allows the 
specific detection of BDV antibodies in serum in 20 min permitting the 
discrimination between BVD infected and non-infected bovine sera 
obtained from cattle. Work is still ongoing to optimize the modification 
process to increase the performance of the immunosensor.
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