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Introduction
Obesity is defined as the accumulation of excess fat in the body that 

can compromise health: this corresponds to a BMI equal to or greater 
than 30 kg/m2, with three different likely levels that are class I (BMI = 
30.0 – 39.9 kg/m2), class II (BMI = 40.0 – 49.9 kg/m2) and class III (BMI 
> 50 kg/m2) [1].

Obesity is considered a risk factor for various chronic illnesses 
such as cardiovascular diseases and hypertension, type 2 diabetes and 
thyreopathies, non-alcoholic fatty liver disease, and cancer. Over the 
past thirty years, the prevalence of obesity is rapidly getting higher not 
only in developed countries but also in developing countries. Even 
though physical inactivity and excessive food intake are usually thought 
of as the cause of obesity, its etiology is quite complex. There are many 
factors to be taken into account, such as environment, genetics, and 
lifestyle [2]. Besides, the microbiota has been reported as one of the key 
factors in obesity etiology [3-6].

Obesity is one of the easiest diseases to diagnose but one of 
the hardest to treat and it should be treated effectively to avoid its 
consequences on health. Obesity management must be planned in a 
personalized way [7]. At the moment, treatment methods for obesity 
are behavior modification therapy, diet therapy, medical treatment, 
and surgical treatment [8]. Surgery is not always the first choice and 
it should be applied only if the appropriate indications are present; 
after its application, body weight loss occurs with changes in the 
metabolism of bile acids, gastric pH, the metabolism of hormones, and 
in microbiota [9].

Bariatric Surgery

Bariatric surgery is one of the most effective therapeutic treatments 
for obesity and complications [10]. Thanks to it, long-term permanent 
body weight loss is achieved, metabolic effects of obesity are reduced, 
many diseases are prevented and quality of life is markedly increased 
[11]. Body weight loss with bariatric surgery is fulfilled through 
the change of food preferences, reduction of nutrient digestion, 
acceleration of gastric void, regulation of hormonal fluctuation (e.g. 
glucagon-like peptide 1, GLP-1, and peptide tyrosine tyrosine, PYY), 
and alterations in the metabolism of bile acids. In spite of the fact that 
bariatric surgery is suitable for obesity treatment, some complications 
can rarely occur and they should be taken into account in evaluating 
surgical risk. These are gastroesophageal reflux, nutritional deficiencies, 
gastric outlet obstruction, mesh erosion and marginal ulcerations, 
slippage, and internal herniation [12]. Indications for bariatric surgery 
were established by the United States National Institute of Health in 
1991 (Table 1) [13].

There are various bariatric surgical methods according to their 
effect mechanisms (Figure 1) [14].
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Abstract
Obesity is a worldwide ongoing pandemic and its consequences have a dramatic effect on society. Bariatric surgery 

is a key method to solve obesity, with 800,000 ca cases worldwide yearly and high outcome variability, which includes 
gut microbiota change. The relationship between weight and gut microbiota should be studied as it can affect the 
efficacy of weight-losing techniques.

Surgical techniques

The most common surgical techniques in bariatric surgery are 
described as follows.

RYBG: Roux-en-Y gastric bypass is the gold standard in the surgical 
treatment of obesity so it is the most commonly practiced bariatric 
surgery in the world [15]. This method consists of two steps. First of 
all, the stomach capacity is left to be about 30 cm3; Roux sputum can 
then be pulled up from the stomach, the front of the colon and back of 
the stomach, or behind the colon and stomach for gastro-jejunostomy 
[16]. The input of food and energy goes down due to the reduction in 
stomach volume. In certain cases, fat malabsorption can happen [17].

LSG: Laparoscopic sleeve gastrectomy consists of the removal of 
80% ca of the lateral aspect of the stomach in a vertical fashion, leaving 
a long gastric tube [18]. LSG is preferred for patients who have super 
obesity and a BMI < 50 kg/m2 [19]. Due to the reduction of gastric 
volume, nutrient, and energy intake are restricted; however, there is a 
reduction in plasma levels of ghrelin [20].

LAGB: Laparoscopic adjustable gastric banding involves the 
placement of an adjustable silicone band around the upper part of the 
stomach, thus forming a small gastric space over the gastric band. The 
size of the gap between the upper stomach space and the posterior 

Indication for surgical operation [13]
BMI=40 kg/m2  (or) BMI > 35 kg/m2 + type 2 diabetes, hypertension, sleep 
apnea, or hyperlipidemia
Acceptance of surgical risk
Failure of nonsurgical treatments
Psychiatric stability, no alcohol and drug dependence
Well-established motivation, knowledge of the operation and its sequelae
No medical problems that will harm the surgeon
No uncontrolled psychotic and depressive disorder
Complete family and social support

Table 1: Indication for surgical operation in obesity according to the United States 
National Institute of Health 1991.
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part of the stomach can be tailored by filling it with sterile 0.9% saline 
solution injected through the abdominal wall. Adjustment of the band 
can be done piecemeal during postoperative follow-up [21]. This 
method provides body weight loss by reducing nutrient uptake with a 
completely restrictive effect [14].

BPD: Biliopancreatic diversion (BPD) is composed of three main 
components: a gastric tube with preserved pylorus, distal ileoanal 
anastomosis, and anastomosis of the proximal duodenal bile duct. 
Body weight loss is provided by the reduction of gastric volume and 
decrease of ghrelin hormone, increasing PYY, as it happens in LSG. In 
this technique, hormonal changes with anatomical changes are thought 
to be the route to body weight loss [22].

Surgery induces important changes in both intrinsic and extrinsic 
factors, as well as in the anatomy of the gastrointestinal system (Table 
2) [23, 24].

The gut microbiome

The human body is colonized by a huge variety of microbes, 
commonly referred to as the human microbiota. It comprises 
commensal, symbiotic, and pathogenic microbes. Microbiome, 
instead, is the genetic pool of microbiota living in a specific place and 
their relation with the environment [25]. It is estimated that there 
are about 1,014 microorganisms in the human body, more than 70% 
of which are in the colon, and more than 35,000 bacterial strains in 

the gastrointestinal tract [26]. Microbiota is determined by various 
factors such as delivery type, breastfeeding time, transition time to 
complementary feeding, diet, and use of antibiotics from birth to death 
but also host weight and sugar consumption [27].

The gut microbiota is a complex ecosystem, which provides major 
functions to the host such as metabolism regulation, modulation of 
the immune system, and thus protection against pathogens [28-31]. 
Gut microbiota can be classified into six bacterial clusters in healthy 
individuals and these include Firmicutes (including gram+ve strains of 
Clostridium, Eubacterium, Ruminococcus, Butyrivibrio, Anaerostipes, 
Roseburia, Faecalibacterium, etc.), Bacteroidetes (including gram-
negative strains of Bacteroides, Porphyromonas, Prevotella, etc.), 
Proteobacteria (including gram- strains such as Enterobacteriaceae), 
Actinobacteria (including the gram+ve Bifidobacterium genus), 
Fusobacteria and Verrucomicrobia (including Akkermansia, etc.) 
[32]. Bacteroidetes and Firmicutes form more than 90% of the 
total intestinal microbiota. The most important components of the 
human intestinal microbiota are obligate anaerobes of the genus 
Bacteroides, Eubacterium, Clostridium, Ruminococcus, Peptococcus, 
Peptostreptococcus, Bifidobacterium, and Fusobacterium and 
facultative anaerobes such as Escherichia, Enterobacter, Enterococcus, 
Klebsiella, Lactobacillus, and Proteus. Methanogenic archaea have 
also been pointed out and the most important in the human gut is 
Methanobrevibacter smithii [33]. Changes in microbiota content 
shape human health at a significant level. It is outlined that many 
non-communicable diseases such as obesity, type 2 diabetes, asthma 
and allergies, inflammatory bowel disease, metabolic syndrome, and 
atherosclerosis are intimately linked with gut microbiota [34].

Gut disbiosis in obesity

It is reported that genetic and environmental factors affect obesity 
etiology. Researchers have also noted that intestinal microbiota 
contributes to the regulation of energy and fat metabolism and that 
it affects obesity and its complications [35]. It has been outlined that 
obese patients have less variability in the intestinal microbiota than 
normal-weight individuals [36]. The fundamental function that splits 
up microbial strains from obese and thin individuals is the inability to 
obtain fermentation; another difference is that short-chain fatty acids 
cannot be produced from indigestible food [37].

Intestinal microbiota studies in both human and animal models 
have helped in understanding the role of microbial activity in the 
etiology of obesity. It has been outlined that patients with obesity have 
fewer Bacteroidetes and more Firmicutes in their microbiota than 
normal-weight people. It is well known that diets rich in saturated fatty 
acids lead to obesity and hepatic steatosis, increasing the Firmicutes/
Bacteroidetes ratio in the gut microbiota [38]. On the other hand, 
fat and carbohydrate-restricted diets and body weight loss cause 
the amount of Bacteroidetes to increase and thus the Firmicutes/
Bacteriodetes ratio to decrease [39]. These shreds of evidence are 
controversial so that some studies show that there is no relationship 
between BMI and Firmicutes/Bacteroidetes [40,41] although other 
studies display an increase in Firmicutes/Bacteroidetes ratio in obesity 
and insulin resistance. Reduction of carbohydrate intake in obese 
patients decreases the butyrate levels in feces which corresponds to a 
decrease in the level of Roseburia spp. and Eubacterium rectale [42]. 
The microbiota is affected by body weight loss caused by diet and 
exercise. It has been reported that the quantities of Bacteroides and 
Lactobacillus increase as a result of energy restriction and exercise in 
patients with obesity. Nonetheless, no changes were seen in overweight 
adolescents who lost less than 2 kg in body weight [43].

Figure 1: Scheme of the main techniques in bariatric surgery. LABG: laparoscopic 
adjustable gastric banding; SG: sleeve gastrectomy; VBG: vertical banding 
gastroplasty; JIB: jejunoileal bypass; RYBG: Roux-en-y gastric bypass; DS: 
Duodenal switch; BPD: biliopancreatic diversion [14].

Changes RYBG LSG LAGB
Food intake ↓ ↓ ↓
Food transit time ↑ = ↓
Food choices ↓preference for 

food rich in fats 
and sugars 

↓ ↑preference for 
food poor in fibers

Chewing time ↑ ↑ ↑

Acid production disrupted = =
Ghrelin = ↓ =
GLP-1 and PYY ↑ = =
Insulin ↓ ↓ ↓
Leptin ↓ ↓ ↓
Adiponectin ↑ ↑ ↑

Table 2: Behavioural and biochemical changes in RYBG, LSG and LAGB. 
RYBG: Roux-en-y gastric bypass, LSG: laparoscopic sleeve gastrectomy, LAGB: 
laparoscopic adjustable gastric banding. GLP-1: glucagon-like peptide 1, PYY: 
peptide tyrosine tyrosine.
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Obesity can affect the human immune system in a significant way 
and gut microbiota is likely to express a notable function. This is a 
controversial statement because there is much disagreeing evidence in 
scientific literature. For example, it has been outlined that a higher BMI 
compromises immunization following COVID-19 vaccination [44] but 
other studies, instead, have reported that is no relationship between 
BMI and COVID-19 severity, even in the most critical cases [45]. 
Moreover, it has been stated that obesity could have a protective role 
against infectious diseases: that is the case of pouchitis by Clostridioides 
difficile. [46]

What is true is far from easy to be defined. This is mostly due to the 
fact that obesity is complex to the extent that it cannot be evaluated as a 
single variable. In any case, intestinal microbiota modification may be 
a therapeutic treatment for the prevention or even reversal of obesity.

Bariatric surgery and microbiota

It is reported that significant changes in gut microbiota occur 
after bariatric surgery; the most likely mechanisms include changes in 
food choices and preferences, reduction of food intake, and nutrient 
malabsorption [47].

First of all, short-term dietary changes may cause fast changes in 
the composition of intestinal microbiota. As an example, it has been 
outlined that Prevotella enterotypes are associated with complex 
carbohydrate-rich and simple carbohydrate-rich diets, whereas 
Bacteroidetes enterotype is correlated with a typical “Western diet”, 
full of animal protein and saturated fatty acids [48]. In detail, some 
diets can affect the quantity of specific strains of gut microbiota, such 
as diets low in fats and high in carbohydrates but also diets high in 
carbohydrates with a low glycemic index [49].

A second factor regulating the change in gut microbiota after 
bariatric surgery has been stated to be bile acids [8]. Bile acids can rule 
their synthesis and their intestinal reabsorption through modulation 
of the nuclear-located farnesoid X receptor (FXR). Another pathway 
of auto regulation is the G-linked protein TGR5, but this pathway is 
yet to be 100% understood [50]. Recently, the physiological role of bile 
acids has been associated with pancreatic beta cell function and thus 
glucose homeostasis but also energy consumption. Even these roles of 
bile acids are correlated with FXR and TGR5 pathways [8]. Bile and 
pancreatic secretions are separated from nutrients in RYGB and they 
come together only in the more distal part of the intestine; as a result, 
the distal jejunum and proximal ileum are excessively exposed to the 
nutrients. Dietary lipids are surrounded by the bile acids, while bile 
acids cycling in the upper intestine become blunted: this leads to an 
increase of serum bile acids level and of serum FGF15/19 levels that 
normalize the postprandial bile acids answer after surgery [51]. The 
pathway underlying the beneficial effects of bariatric surgery has been 
outlined to be changes in bile acids metabolism [43]. The change in bile 
acids flow has a definite effect on the alterations in gut microbiota after 
bariatric surgery, too. In the proximal jejunum, the absence of nutrient 
transit and the decrease in mobility alter the number of bacteria [24]. The 
changes in bile acids flow also change the 7α-dehydroxylation capacity 
of the intestinal microbiota, which is implied in the synthesis of the 
secondary (intermediate) bile acids. In these terms, administration of a 
diet supplemented with the primary bile acid colic acid to rats increases 
the presence of Firmicutes, which contains the enzyme 7α-hydroxylase 
such as Clostridium spp [52].

Even hormones, such as leptin and ghrelin, may change after 
bariatric surgery. Hormonal changes are linked to both energy 
metabolism and microbiota [53]. Despite the relationship between 

gut microbiota and ghrelin is not clearly comprehended, prebiotics 
are reported to modulate gut microbiota and decrease serum ghrelin 
levels [54]. On the other hand, leptin has a controversial role. Serum 
leptin levels have been outlined to have a positive correlation with 
Mucispirillum, Lactococcus. Another study stated that leptin has a 
positive correlation with Bifidobacterium and Lactobacillus whilst a 
negative correlation with Bacteroides, Clostridium, and Prevotella 
[55]. Researchers have emphasized that further studies are necessary, 
even though hormones have been reported to influence the intestinal 
microbiota [38, 56-58].

Another important factor affecting microbiota is changes in pH. 
After surgery, pH increases as the volume of the stomach decreases. The 
changing pH influences every part of the gastrointestinal system after 
the stomach. Increased pH can affect microbiota at an important level. 
It has been reported that Bacteroidetes decrease due to pH fluctuations 
after surgery, while Firmicutes and Actinobacteria increase [59].

After bariatric surgery, microbiota diversity changes due to the 
reasons mentioned above. Table 3 briefs how microorganisms are 
affected by bariatric surgery [8].

Conclusion
Bariatric surgery is one of the main treatments of obesity. It 

is considerably effective in achieving and protecting weight loss. 
The effectiveness of obesity treatments after bariatric surgery is not 
only related to food consumption but also to microbiota alteration. 
Malabsorption status after bariatric surgery, changes in the metabolism 
of bile acids, gastric pH, and the metabolism of hormones give rise 
to gut microbiota alteration. Changes in microbiota also influence 
energy homeostasis. Because of these reasons, microbiota should be 
highlighted as a key factor in body weight loss after bariatric surgery.
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