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Introduction
Mappings play as important role, in the study of modern 

mathematics, especially in topology and functional analysis [1-5]. 
Different types of closed and open mappings were studied by various 
researchers [6]. Generalized closed mappings were introduce and 
studied. After him different mathematicians worked and studied on 
different versions of generalized maps [7]. 

Hammed introduced and studied αrps-closed sets and also 
introduce the notion (αrps-continuous, αrps-irresolute and strongly 
αrps-continuous) functions [8]. 

In this paper, we introduce and study new types of closed maps 
namely αrps-closed map in topological spaces and we use this maps 
to give other types of αrps-closed map which are (αrps-closed maps 
[9-13], strongly αrps-closed maps and almost αrps-closed maps) 
and we discussion the properties of these maps as well as, shows the 
relationships between some types of these maps [14-18]. 

Throughout this paper (X,τ), (Y,σ) and (Z,µ) (or simply X,Y and 
Z) represent non-empty topological spaces [19-22]. For a sub set A of a 
space X.cl (A), int (A) and Ac denoted the closure of A, the interior of 
A and the complement of A in X respectively [23]. 

Preliminaries 
Some definition and basic concepts have been given in this section. 

Definition

A subset A of a space X is said to be: 

1.	 Semi-open [9] If A ⊆ cl(int t(A)) and semi-closed set if int( 
cL(A)) ⊆ A. 

2.	 α-Open set [16] If A ⊆ int(cl(int(A))) and α-closed set if 
cl(int(cl(A)) ⊆ A. 

3.	 Preopen set [15] If A ⊆ int(cl(A)) and preclosed if cl(int(A) 
⊆ A. 

4.	 Semi-preopen set [1] If A ⊆ cl(int(cl(A)) and semi-preclosed if 
int (Cl(int(A)) ⊆ A). 

5.	 Regular open [20] If A=int(cl(A) and regular closed if 
A=cl(int(A)).

6.	 Regular α-open [21] if there is a regular open set U such that 
U ⊆ A ⊆ αcl(U). 

The semi-closure (resp. α-closure, semi-pre closure), of a sub set 

A of X is the intersection of all semi-closed (resp. α-closed, semi-pre 
closed) sets containing A and denoted by scl(A) (resp. αcl(A), resp. 
spcl(A). 

Remark: It has been proved that: 

1.	 Every regular closed set and closed set in a space X is an αrps-
closed set. 

2.	 Every αrps-closed set is (sg-closed, gs-closed, αg-closed, gα-
closed, rg-closed and rgα-closed) set. 

Definition 

A sub set A of a space X is said to be a: 

1.	 Generalized closed set (briefly, g-closed) [10] if cl(A) ⊆ U 
whenever A ⊆ U and U is an open set in X. 

2.	 Generalized semi-closed set (briefly, gs-closed) [3] if scl(A) ⊆ 
U whenever A ⊆ U and U is an open set in X. 

3.	 Semi-generalized closed set (briefly, sg-closed) [5] if scl(A) ⊆ U 
whenever A ⊆ U and U is a semi-open set in X.

4.	 Generalized α-closed set (briefly, gα-closed) [13] if αcl(A) ⊆ U 
whenever A ⊆ U and U is an α-open set in X. 

5.	 α-Generalized closed set (briefly, α g-closed) [12] if αcl(A) ⊆ U 
whenever A ⊆ U and U is an open set in X. 

6.	 Regular generalized closed set (briefly, rg-closed) [18] if cl(A) 
⊆ U whenever A ⊆ U and U is a regular open set X. 

7.	 Regular generalized α-closed set (briefly, rgα-closed) [21] if 
cl(int(A)) ⊆ U whenever A ⊆ U and U is a regular α-open set. 

8.	 Pre-semi closed] if spcl(A) ⊆ U whenever A ⊆ U and U is a 
g-open.

9.	 Regular pre-semi closed (briefly, rps-closed) [19] if spcl (A) ⊆ 
U whenever A ⊆ U and U is an rg-open set in X. 
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10.	αrps-Closed set [8] if αcl(A) ⊆ U whenever A ⊆ U and U is 
arps-open set in X. 

The complement

g-Closed (resp. gs-closed, sg-closed, gα-closed, αg-closed, rg-
closed, rgα-closed, rps-closed and αrps-closed) sets is called a g-open 
(resp. gs-open, sg-open, gα-open, αg-open, rg-open, rgα-open, rps- 
open and αrps-open) sets, 

The class: The regular closed (resp. g-closed, sg-closed, gs-closed, 
αg-closed, gα-closed, rg-closed, rgα-closed, rps-closed and αrps-
closed) subsets of X is denoted by RC(X,τ)[resp. GC(X,τ), SGC(X,τ), 
GSC(X,τ), αGC(X,τ), GαC (X,τ),RGC(X,τ), RGαC(X,τ), RPSC(X,τ) 
and αRPSC(X,τ)]. 

Definition

A map f: (X, τ) ⟶ (Y, σ) is called 

1.	 Closed map: if f(A) is a closed set in (Y,σ), for every closed set 
A in (X, τ) [ 20]. 

2.	 g-Closed map: if f(A) is g-closed set in (Y,σ), for every closed 
set A in (X, τ) [11]. 

3.	 sg-Closed map: if f(A) is sg-closed set in (Y,σ), for every closed 
set A in ( X, τ) [7]. 

4.	 gs-Closed map: if f(A) is gs-closed set in (Y, σ), for every closed 
set A in( X, τ) [7]. 

5.	 gα-Closed map: if f(A) is gα-closed set in (Y,σ), for every 
closed set A in (X, τ) [6]. 

6.	 αg-Closed map: if f(A) is αg-closed set in (Y, σ), for every 
closed set A in (X, τ) [6]. 

7.	 rg-closed map: if f(A) is rg-closed set in (Y, σ), for every closed 
set A in (X, τ) [4]. 

8.	 rgα-Closedmap: if f(A) is rgα-closed in (Y, σ), for every closed 
set A in (X, τ) [22]. 

9.	 Almost-Closed map: if f(A) is a closed set in (Y, σ), for every 
regular closed set A in (X, τ) [17]. 

Definition : A topological space X is said to be:

1. 𝐓*𝟏/𝟐 - spaces: If every rg-closed sets is closed [13]. 

2. Tb-space: If every gs-closed sets is closed [6]. 

3. 𝛂𝐓𝐛-space: If every αg- closed sets is closed [6]. 

4. T1/2-space: If every g- closed sets is closed [10]. 

5. Locally Indiscrete space: if every closed set is a regular closed [3]. 

Definition: A function f: (X, τ) →(Y, σ) is said to be: 

1.	 Continuous function: If the inverse image of each open 
(closed) set in Y is an open(closed) set in X [9]. 

2.	 𝛂rps-Continuous: If f −1(A) is αrps- closed set in X for every 
closed set A in Y [8]. 

3.	 αrps-Irresolute continuous: If f −1 (A) is an αrps-closed set in 
X for every αrps-closed set A in Y [8]. 

4.	 Stronglyαrps-continuous continuous: If f −1 (A) is closed set 
in X for every αrps-closed set A in Y [8]. 

Proposition 

1.	 If X is a T1/2-space, then every g-closed set in X is αrps-closed.

2.	 If X is a Tb-space, then every αrps-closed set in X is g-closed. 

3.	 If X is a T*1/2-space, then every αrps-closed set in X is closed. 

𝛂rps-Closed Maps
 In this section, we introduce a new type of closed sets namely αrps-

closed maps in topological spaces and study some of their properties. 

Definition : A map f: (X, τ)⟶(Y, σ) is called αrps-closed map if 
f(A) is αrps-closed set in (Y, σ), for every closed set A in (X, τ). 

Proposition: Every closed map is αrps-closed map. 

Proof : It follows from definition of closed map and fact that every 
closed set is αrps-closed map. 

Remark: The converse of above proposition need not be true as 
seen from the following example. 

Example: Let X={a, b, c} with the topology τ={X, θ, {a}, {a, c}}, 
where αRPSC(X, τ)={X, θ, {b}, {c}, {b, c}} and define f: (X, τ)→(X, τ) by 
f(a)=a, f(b)=c and f(c)=b, then f is αrps-closed map, but f is not closed 
map, since for the closed set A={b} in {X, τ}, but f(A)=f({b})={c} is 
αrps-closed set in (X, τ), but is not closed set in (X, τ). 

Proposition : Every αrps-closed map f : (X, τ) →(Y, σ) is 

1. αg-Closed map. 

2. gα-Closed map. 

3. sg-Closed map. 

4. gs-Closed map.

5. rg- Closed map. 

6. rgα-Closed map. 

Proof: 1: Let A be a closed set in (X, τ), since f is αrps-closed map. 
Thus f(A) is αrps-closed set in (Y, σ) and by using remark [every αrps-
closed set is αg-closed set] we get f(A) is αg-closed set in (Y, σ). Hence, 
f: (X, τ) →(Y, σ) is αg-closed map. 2: Let A be a closed set in (X, τ), since 
f is αrps-closed map. Thus f(A) is αrps-closed set in (Y, σ) and by using 
remark, [every αrps-closed set is gα-closed set] we get f(A) is gα-closed 
set in (Y, σ). Hence, f: (X, τ) →(Y, σ) is gα-closed map. 

The proof of steps 3, 4, 5, and 6 are similar to step 1 and 2. 

The following example show the converse of proposition need not 
be true in general. 

Example : Let X={a, b, c}, with the topology τ={X, θ, {a}, {b, c}}, 
where αRPSC(X, τ)={X, θ, {a}, {b, c}}, GαC(X,τ) =SGC(X, τ)=GSC(X, 
τ)=RGC(X, τ) =RGαC(X, τ)={X, θ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}, 
define f: (X, τ) →(X, τ) by f(a)=b, f(b)=a and f(c)=c, then it is clear that f 
is (αg-closed, gα-closed, sg-closed, gsclosed, rg-closed and rgα-closed ) 
map, but f is not αrps-closed, since for the closed set A={b, c} in {X, τ}, 
but f(A)=f({b, c})={a,c} is (αg-closed, gα-closed, sg-closed, gs-closed, 
rg-closed and rgα-closed) set in (X, τ), but is not αrps-closed set in (X, τ). 

Remark: The concepts of g-closed map and almost closed map are 
independent to αrps-closed map. As show in the following examples. 

Example

Let X={a, b, c} with the topology τ={X, θ, {a}, {a, c}}, where 
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3. Let A be a closed set in (X, τ), since f is gs-closed map. Thus, f(A) 
is gs-closed set in (Y, σ), also since Y is a Tb-space, then f(A) is a closed 
set in (Y, σ), and by remark (every closed set is αrps-closed set), hence 
f(A) is αrps-closed set in (Y, σ) Therefore, f is αrps-closed map. 

4. It is follows from the fact ( every sg-closed map is an gs-closed 
map) and since Y is a Tb − space, then by we get, f is αrps-closed. 

5. Let A be a closed set in (X, τ), since f is rg-closed map. Thus, f(A) 
is rg-closed set in (Y, σ), also since Y is a T*1/2-space, then by definition. 
We get f(A) is a closed set in (Y,σ), and by remark (every closed set is 
αrps-closed set), hence f(A) is αrps-closed set in (Y, σ) Therefore, f is 
αrps-closed map. 

6. It is follows from the fact (every rgα-closed map is an rg-closed 
map), and since Y is a T*1/2-space, then by we get, f is αrps-closed. 

Similarly, we proof the following proposition. 

Proposition 

1.	 If f: (X, τ) →(Y, σ) is g-closed map Y is T1⁄2-space, then f is a αrps 
closed map. 

2.	 If f: (X, τ) →(Y, σ) is αrps-closed map Y isT*1/2-space, then f is 
a g closed map. 

3.	 If f: (X, τ) →(Y, σ) is αrps-closed map Y is T*1/2-space, then f is 
almost-closed map. 

4.	 If f: (X, τ) →(Y, σ) is almost-closed map and (X, τ) is a locally 
indiscrete then f is αrps-closed map. 

Remark: The composition of two αrps-closed maps need not 
beαrps-closed map in general, the following example to show that. 

Example

Let X=Y=Z={a, b, c} with the topologies τ={X, θ, {a}, {a, c}}, σ={y,
θ,{a}},μ={Z,θ,{a},{b},{a,b}} where αRPSC(Y,σ)={Y, θ, {b},{c},{b, c}} and 
αRPSC(Z, μ)={Z, θ, {c}{a, c}, {b, c}}. let f: (X, τ)→(Y, σ) be the identity 
map, and g: (Y,σ)→(Z, μ) be a map defined by g(a)=b and g(b)=a and 
g(c)=c, then it is easy to see that f and g are αrps-closed map, but g of: 
(X,τ)→(Z,μ) is not αrps-closed map,since for the closed set A={b} in 
{X, τ}. 

g of (A)=g of ({b})=g(f({b})=g({b})={a}, which is not αrps-closed 
set in (Z, μ). Hence, f is not αrps-closed map. 

The following proposition gives the condition to make the 
composition two αrps-closed maps is also αrps-closed map.

Proposition

Let f: (X, τ) →(Y, σ) and g: ( Y, σ)→(Z,μ) be two αrps-closed maps 
and Y is a T*1/2-space, then g of (X,τ) →(Z,μ) is αrps-closed map. 

Proof: Let A be a closed set in (X, τ), Thus f(A) is αrps- closed set 
in (Y, σ), since Y is a T*1/2-space, then by proposition. we get f(A) is a 
closed set in (Y, σ), also, since g is αrps-closed map, hence g(f({A}) is 
aαrps-closed set in (Z,μ). But g(f{A})=g of (A), that is (f{A})=g of is 
aαrps-closed set in (Z,μ). Therefore g (X, τ) →(Z,μ), is αrps-closed map. 

Proposition: If f: (X, τ) →(Y, σ) is a closed map and g: (Y, σ) →(Z, μ) 
is an αrps- closed map, then g of (X,τ)→(Z,μ) is αrps-closed map. 

Proof: Let A be a closed set in (X, τ), Thus f(A) is a closed set in 
(Y,σ), since g is αrps-closedmap, hence g(f({A}) is an αrps-closed set in 
(Z,μ). That is g(f({A})=g of (A) is aαrps-closed set in (Z,μ). Therefore, g 
of: (X,τ)→(Z,μ) is αrps-closed map. 

αRPSC(X, τ)={X, θ {b},{c}},{b, c}}, GC(X,τ)={X,θ,{b},{a, b},{b, c} and 
define f: (X, τ) →(X, τ) by f(a)=a, f(b)=c and f(c)=b, then f is αrps closed 
map, but f is not g-closed map, since for the closed set A={b} in {X, τ}, 
but f(A)=f({b})={c} is αrps-closed set in (X, τ), but is not g-closed set 
in (X, τ). 

Example

Let X={a, b, c}, with the topology τ={X, θ, {a}, {b, c}}, where 
αRPSC(X, τ)={ X, θ, {a}, {b, c} }, GC(X, τ)={X, θ, {a}, {b}, {c}, {a, b}, {a, 
c}, {b, c} }. Define f: (X, τ) →(X, τ) by f(a)=b, f(b)=a and f(c)=c, then it 
is clear that f is a g-closed map, but f is not αrps−closed map, since for 
the closed set A={a} in {X, τ}, but f(A)=f({a})={b} g-closed set in (X, τ), 
but is not αrps-closed set in (X, τ). 

Example

Let X={a, b, c} with the topology τ={X, θ, {a}}, where αRPSC(X, 
τ)={X, θ {b},{c},{b,c}}, and the set of regular closed set={X,θ} define f: 
(X, τ) →(X, τ) by f(a)=b, f(b)=a and f(c)=b, then f is almost -closed map, 
but f is not αrps-closed map, since for the closed set A={b, c} in {X, τ}, 
but f(A)=f({b, c})={a, c} is not αrps-closed set in (X, τ). 

Example

Let X =Y={a, b, c} with the topologies τ={X, θ, {a}, {b}, {a, b} } 
and σ={Y,θ,{a},{a,c}}, where αRPSC(Y,σ)={Y, θ, {b}, {c}, {b, c}}, and 
RC(X, τ)={X,θ}, {a, c}, {b, c}}, let f: (X, τ)→(Y, σ) be a map defined by 
f(a)=f(c)=c and f(b)=b, then f is αrps-closed map, but f is not almost 
-closed map, since for the regular closed set A={a, c} in {X, τ}, but 
f(A)=f({a, c})={c} is not closed set in (Y, σ). 

The following propositions give the condition to make the 
propositions and remark are true: 

Proposition

If f: (X, τ) →(Y, σ) is αrps-closed map and Y is aT*1/2 - space, then f 
is a closed map. 

Proof: Let A be a closed set in (X,τ), since f is αrps-closed map. 
Thus f(A) is αrps-closed set in (Y, σ) and by using remark [every αrps-
closed set is rg-closed set] we get, f(A) is rg-closed set in (Y, σ). Also, 
since Y is aT*1/2-space then, by definition. we get f(A) is a closed set in 
(Y, σ). 

Hence, f is an αrps-closed map 

Proposition: A map f : (X, τ) →(Y, σ)is αrps-closed map, if f is a 

1.	 αg-Closed map and Y is αTb-space. 

2.	 gα-Closed map and Y is αTb-space. 

3.	 gs-Closed map and Y is Tb-space. 

4.	 sg-Closed map and Y is Tb-space. 

5.	 rg-Closed map and Y isT*1/2-space. 

6.	 rgα-Closed map and Y isT*1/2-space. 

 Proof: 1. Let A be a closed set in (X, τ), since f is αg-closed map. 
Thus f(A) is αgclosed set in (Y, σ), by hypotheses Y is a αTb −space, 
then by definition, we get, f(A) is a closed set in (Y, σ), and by remark, 
every closed is αrps-closed set), hence f(A) is αrps-closed set in (Y, σ). 
Therefore, f is αrps-closed map. 

2. It is follows from the fact (every gα-closed map is an αg-closed 
map [6]) and since Y is a αTb −space, then by we get, f is αrps-closed. 
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Remark

If f: (X, τ) →(Y, σ) is αrps-closed map and g: (Y, σ) →(Z, μ) is a closed 
map, then g of (X,τ)→(Z,μ) need not be αrps-closed map, and this is 
shown by the following example: 

Example

Let X=Y=Z={a, b, c} with the topologies τ={X, θ, {a}, {a, c}}, σ={Y, 
θ,{a}}, μ={Z ,θ,{a},{b, c}} where αRPSC (Y,σ)={Y, θ, {b},{c}, {b, c}} and 
αRPSC(Z, μ)={Z, θ, {a}, {a, c}.let f:(X,τ)→(Y, σ), and g:(Y,σ)→(Z,μ) be 
two the identity maps then it is easy to see that f isαrps-closed map 
and g is a closed map, but g of: (X,τ)→(Z,μ)) is not αrps-closed map, 
since for the closed set A={b} in{X, τ}, then g of (A)=g of ({b})=g(f 
({b})=g({b})={b}, which is not αrps-closed set in (Z,μ). Therefore, g of 
(X,τ)→(Z,μ) is not αrps-closed map. 

The following propositions give the condition to make remark true: 

Proposition

If f(X,τ)→(Y, σ) is an αrps- closed map, g:(Y, σ)→(Z, μ) is a closed 
map and let Y be T*1/2-space, then g of: (X,τ) →(Z, μ) is αrps-closed map 

Proof

Let A be a closed set in (X, τ), Thus f(A) is αrps- closed set in (Y, σ), 
since Y is a T*1/2space, then by proposition. we get f(A) is a closed set 
in (Y,σ), also, since g is a closed map, hence g(f({A}) is a closed set in 
(Z, μ), by remark. [∀ closed set is] αrps-closed set]. Then, g(f({A}) is an 
αrps-closed setin (Z,μ). But, g(f({A})=g of (A), that is g of (A)is aαrps- 
closed set in (Z, μ). Therefore, g of: (X,τ)→(Z,μ) is αrps-closed map.

Proposition

Let f: (X, τ) →(Y, σ) and g: (Y,σ)→(Z,μ) be two maps, such that their 
composition g of (X,τ)→(Z,μ) is αrps-closed map, 

1.	 If f is a continuous and subjective, then g is αrps-closed map. 

2.	 If g is αrps* - continuous and injective, then f is αrps-closed 
map. 

Proof: (i):- Let A be a closed set of (Y, σ), since f is a continuous, 
then f-1(A)) is a closed set in (X,τ). Also, since g of: (X,τ)→(Z,μ) is an 
αrps-closed map, thus g of (f−1(A)) is αrps-closed set in (Z,μ). That is 
g of (f-1(A))=g(f(f-1(A))=g(A), hence g(A) isαrps-closed set in (Z,μ). 
Since, f is surjective. Therefore, g is αrps-closed map. 

Proof: (ii):- Let E be a closed set in (X,τ). Since g of (X,τ)→(Z,μ) is 
an αrps-closed map, thus g of (E)is an αrps-closed set in (Z,μ), since g 
is αrps*-continuous. Then g-1(g of (E))=f(E) is an αrps-closed setin (Y, 
σ). Also, since f is injective. Therefore, f is αrps-closed map. 

Some Types of αrps-Closed Maps 
Some other types of αrps-closed maps are given in this section such 

as [α*rps-closed maps, strongly αrps-closed maps and almost αrps-
closed maps) with study the relationships between these types of maps. 

Definition

A map f: (X, τ) ⟶ (Y, σ) is called α*rps-closed map if f(A) is αrps-
closed set in (Y, σ), for every αrps-closed set A in (X, τ). 

Proposition 

Every α*rps-closed map is αrps-closed map. 

Proof: Let f: (X, τ)⟶(Y,σ) be α*rps-closed map and let A be a 

closed set in (X, τ), by remark ∀ closed set is a αrps-closed set]. Thus, A 
is aαrps-closed set in (X, τ). Since f is a α*rps-closed map. Then, f(A) is 
a αrps-closed set in (Y, σ). Therefore, f is αrps-closed map. 

Corollary : Everyα*rps-closed map is 

1.	 αg-Closed map. 

2.	 gα-Closed map. 

3.	 sg-Closed map. 

4.	 gs-Closed map. 

5.	 rg-Closed map. 

6.	 rgα-Closed map. 

Proof

It is follows from proposition. 

Remark: The converse of proposition are not true in general. It is 
easy to see that in example, f isα*rps-closed map, but is not closed, and 
in example it is clear that f is (αg-closed map, gαclosed map, sg-closed 
map, gs-closed map, rg-closed map and rgα-closed map), but is not 
α*rps-closed map. 

1.	 The concepts of closed map and almost-closed map are 
independent to α*rps-closed map. It is clear see that in examples. 

The following propositions give the condition to make the 
proposition, corollary and Remark are true. 

Proposition: Let f: (X,τ)⟶(Y, σ) be an  α*rps-closed map and Y is 
T*1/2space then f is a 

1.	 Closed map. 

2.	 Almost-closed map. 

Proof (i):- It is follows from proposition, we get f is a closed map. 

Proof (ii): It is follows from the fact (∀ closed map is almost-closed 
map [17]. 

Proposition: Let f: (X, τ)⟶ (Y, σ) be any map, then f is α*rps-
closed map, if X is T*1/2-space and f is a 

1.	 αg-closed map and Y is a αTb-space. 

2.	 gα-closed map and Y is a αTb-space. 

Proof (i)

Let A be an α*rps-closed set in (X, τ), since X is a T*1/2-space, then 
by using proposition. We get, A is a closed set in X. Also, since f is αg-
closed map. Thus, f(A) is αg-closed in (Y,σ) and since Y is αTb-space, 
then f(A) is closed set in (Y, σ), by remark [∀-closed set is an α*rps-
closed set]. Hence, f(A) is α*rps- closed set in (Y, σ). Therefore, f is 
α*rps-closed map. 

Proof (ii)

It is follows from the fact (∀ gα-closed map is αg-closed map [6]), 
and Similarly, we proof the following proposition. 

Proposition

Let f: (X, τ)⟶ (Y, σ) be any map, then f is α*rps-closed map, if X is 
T*1/2-space and f is a 

1.	 gs-Closed map and Y is a Tb-space. 
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2.	 sg-Closed map and Y is a Tb -space. 

3.	 rg-Closed map and Y is T*1/2-space. 

4.	 rgα-closed map and Y is T*1/2-space 

5.	 Closed map. 

6.	 αrps-Closed map. 

7.	 g-Closed map. 

Proposition

If f: (X, τ) ⟶ (Y, σ) is a almost - closed map and X is a T*1/2-space 
and locally indiscrete, then f is α*rps-closed map. 

Proof

Let A is a αrps-closed set in (X, τ). Since X is a T*1/2-space, then 
by using proposition. We get A is a closed set in X. Also, since X is a 
locally indiscrete, then by definition of locally indiscrete we have, A is 
a regular closed set in X. since f is a almost-closed map. Thus, f(A) is a 
closed set in Y and by remark [∀ closed set in X]. Hence, f(A) is a αrps 
-closed set in Y. Therefore, f is α*rps- closed map. 

Proposition

The composition of two α*rps-closed maps is alsoα*rps closed map. 

Proof: Let f: (X, τ) ⟶ (Y, σ) and g: (Y,σ)→(Z,μ) be two α*rps -closed 
map, and A be αrps-closed set in X, since f is α*rps-closed map, then 
f(A) is an αrps - closed set in (Y,σ). Also, since g is an α*rps-closed map. 
Thus, g(f({A}) is aαrps-closed set in (Z,μ). That is g(f ({A})=g of (A)is a 
αrps- closed set in (Z, μ).

Therefore, g of (X,τ)→(Z,μ) is α*rps-closed map. 

Proposition

If f:(X,τ)⟶(Y,σ) is αrps-closed map and g:(Y,σ) →(Z, μ) is α*rps-
closed map, then g of: (X,τ)→(Z,μ) is αrps-closed map. 

Proof: Let A be a closed set in (X, τ), then f(A) is αrps - closed 
set in (Y,σ). Also, since g is α*rps-closed map. Thus, g(f({A}) is aαrps-
closed set in (Z,μ). That is, g(f({A})=g of (A)is aαrps-closed set in (Z, μ). 
Therefore, g of: (X,τ)→(Z,μ) is αrps-closed map. 

Similarly, we proof the following corollary. 

Corollary

If f:(X, τ)⟶(Y,σ) is a closed map and g:(Y, σ →(Z, μ) is α*rps -closed 
map, then g of (X,τ)→(Z,μ) is αrps-closed map. 

Now, we give another type of αrps-closed map is called strongly 
αrps-closed map. 

Definition

A map f: (X, τ) ⟶ (Y, σ) is called strongly αrps-closed map if f(A) 
is closed set in (Y, σ), for every αrps-closed set A in (X, τ). 

Proposition

Every strongly αrps- closed map f: (X, τ)⟶(Y, σ) is 

i.	 Closed map. 

ii.	 Almost-closed map. 

iii.	 g-Closed map. 

iv.	 αrps-Closed map. 

v.	 α*rps-Closed map. 

Proof 

i.	 Let A be a closed set in (X, τ), by using remark, step [∀ closed 
set is an αrps-closed]we get, A is an αrps-closed set in (X, τ). 
Since f is strongly αrps- closed map. Thus, f(A) is a closed set 
in(Y, σ). Therefore, f is a closed map.

ii.	 It is clear that from step [∀ strongly αrps-closed map is a closed 
and the fact ( closed map is almost closed, [17]. 

iii.	 It is clear that from step [∀ strongly αrps-closed map is a closed 
and the fact (∀ closed map is g-closed, [4])

iv.	 It is clear that from step and the proposition. 

v.	 Let A be an αrps-closed set in (X, τ). Since f is strongly αrps-
closed map.

Thus, f(A) is a closed set in (Y, σ), by using remark, [∀ closed set 
is an αrps-closed set], then A is an αrps-closed set in (Y, σ). Therefore 
f is a α*rps-closed 

Corollary: Every strongly αrps-closed map f: (X, τ) ⟶ (Y, σ) is 

1.	 αg-Closed map. 

2.	 gα-Closed map. 

3.	 sg-Closed map. 

4.	 gs-Closed map. 

5.	 rg-Closed map. 

6.	 rgα-Closed map. 

Proof

It is clear that from proposition. The following examples show the 
converse of above proposition and corollary need not be true in general. 

Example

Let X={a, b, c} with the topology τ={X, θ, {a}} and let f: (X, τ) →(X, 
τ) be an identity map. Then, it is clear that f is a closed map, [almost- 
closed map and g-closed map] but is not strongly αrps-closed, since for 
closed set A={b}, f(A)=f({b})={b} is not closed set in (X,τ).

Example

Let X=Y={a, b, c} with the topologies τ={X, θ, {a}}, and σ={ Y, θ, {a}, 
{a, c}}, where αRPSC (X, τ)={X, θ, {b},{c}, {b, c}} and let f: (X, τ) →(Y, σ) 
be an identity map. Then, it is clear that f is αrps-closed map and α*rps 
-closed map but is not strongly αrps-closed map, since for closed set 
A={c}, then f(A)=f({c})={c} is not closed set in (Y, σ). 

Example

LetX=Y={a, b, c} with the topologies τ={X, θ, {a}}, and σ={Y, θ, 
{a}, {b, c} }. Define f: (X, τ) →(Y, σ) by f(a)=b, f(b)=a and f(c)=c. Then, 
it is clear that f is αg-closed map (gα-closed map, sg-closed map, gs-
closed map, rg-closed map and rgα-closed map), but is not strongly 
αrps-closed map, since for closed set A={c}, then f(A)=f({c})={c} is not 
closed set in (Y,σ).

The following condition to make proposition and corollary are true 
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Proposition 

Let f : (X, τ) →(Y, σ) be any map, then f is a strongly αrps- closed 
map if X is a T*1/2-space and 

1. Closed map

2. Almost- closed map. 

3. g-Closed map. 

4. gα-Closed map. 

5.αg-Closed map. 

6. rg-Closed map. 

7. rgα-Closed map. 

8. αrps-closed map. 

Proof 

It is follows from proposition and step and proposition. 

Proposition

If f: (X, τ) →(Y, σ)is an α*rps-closed map and Yis a T*1/2-space, then 
f is a strongly αrps-closed map. 

Proof

Let A be an αrps-closed set in (X, τ). Since f is α*rps-closed map. 
Thus f(A) is αrps-closed set in (Y, σ). Also, since Y is T*1/2-space, then 
f(A) is a closed set in (Y, σ). Therefore, f is strongly αrps- closed map. 

Proposition

If f: (X, τ) →(Y, σ) is almost-closed map and Xis a locally - indiscrete 
and T*1/2-space, then f is a strongly αrps- closed map. 

Proof

Let A be an αrps - closed set in (X, τ). Since X is a T*1/2-space. Then, 
A isa closed set in (X, τ), also since X is a locally-indiscrete, thus A is 
a regular closed set in (X, τ), hence f(A) is a αrps-closed set in(Y, σ). 
Therefore, f is a strongly αrps-closed map. 

Next, we give some proposition and results about the composition 
of strongly αrps-closed map. 

Proposition

The composition of two strongly αrps-closed maps is also strongly 
αrps-closed map. 

Proof

Let f: (X, τ) ⟶ (Y, σ) and g: (Y, σ) →(Z, μ) be two strongly αrps-
closed map, and A be αrps-closed set in X, since f is strongly αrps-
closed map, then f(A) is a closed set in (Y, σ), by remark [∀ closed set is 
an αrps-closed set] Thus, f(A) is an αrps-closed set in (Y,σ). Also, since 
g is an strongly αrps closed map. Thus, g(f({A}) is a closed set in (Z,μ). 
That is g(f({A})=g of (A)is aαrps-closed set in (Z, μ). Therefore, g of: 
(X,τ)→(z,μ) is strongly αrps-closed map. 

Similarly, we proof the following proposition. 

Proposition 

1.	 If f: (X, τ) ⟶ (Y, σ) is a strongly αrps-closed map and g: (Y, 
σ) →(Z, μ) is closed map, then g of (X,τ)→(Z, μ) is a strongly 
αrps-closed map. 

2.	 If f: (X, τ) ⟶ (Y, σ) is a α*rps - closed map and g: (Y, σ) →(Z, μ) 
is strongly αrps-closed map, then g of (X,τ) →(Z, μ) is a strongly 
αrps-closed map. 

Proposition

Let f: (X, τ) ⟶ (Y, σ) and g: (Y, σ) →(Z, μ) be two any maps, then g 
of(X,τ) →(Z, μ) is a α*rps -closed map, if f is strongly αrps-closed map 
and 

i. g- is αrps-closed map. 

ii. g- is α*rps -closed map. 

Proof 

(i) Let A be αrps-closed set in X, since f is strongly αrps-closed map, 
then f(A) is a closed set in (Y, σ). Also, since g is αrps-closed map. Thus, 
g(f({A}) is a αrps-closed set in (Z,μ). That is g(f({A})=g of (A) is a αrps-
closed set in (Z, μ). Therefore, g of: (X,τ)→(Z, μ) is α*rps -closed map. 

The proof of steps. 

Remark

In the proposition the composition g of: (X,τ)→(Z, μ) need not be in 
general strongly αrps-closed map. As shows in the following example: 

Example

Let X=Y=Z={a, b, c} with the topologies τ={X, θ, {a}, {b, c}}, σ 
={Y,θ,{a}, {a, c}},μ={z,θ,{a}}. Let f: (X, τ) →(Y, σ) by f(a)=f(b)=b and 
f(c)=c and g: (Y,σ)→(Z,μ) be an identity map, then it is easy to see 
that f is strongly αrps-closed map and g is α*rps- closed map, but g of 
(X,τ)→(Z,μ). 

Is not strongly αrps-closed map,since for the closed set A={a}in {X, 
τ}, then g of (A)=g of ({a})=g(f({a})=g({b})={b}, which is not closed set 
in (Z,μ). 

Proposition

Let f: (X, τ) ⟶ (Y, σ) and g: (Y, σ) →(Z, μ) be two any maps then 
g of: (X,τ)→(Z, μ) is αrps-closed map, if g is strongly αrps-closed and 

i. f is a closed map.

ii. f is a αrps-closed map. 

Proof 

(i) Let A be a closed set in X, since f is closed map, then f(A) is a 
closed set in (Y, σ), by remark [∀ closed set is an αrps-closed set, so we 
get f(A) is an αrps-closed set in(Y, σ). Also, since g is strongly αrps-
closed map. Thus, g(f({A}) is a closed set in (Z, μ). That is g(f({A})=g of 
(A) is a closed set in (Z,μ) and by remark [∀ closed set is an αrps-closed 
set], so we get g of (A) is a closed set in (Z, μ). Therefore, g of: (X,τ)→(Z, 
μ) is α*rps-closed map. The proof of steps. 

Remark

In the proposition the composition g of: (X,τ)→(Z, μ) need not be in 
general strongly αrps-closed map. As shows in the following example.

Example

Let X=Y=Z={a, b, c} with the topologies τ={X,θ,{a}}, σ={Y, θ,{a},
{b},{a,b}},μ={Z,θ,{a},{a,c}} and let f: (X, τ)→(Y, σ) be an identity map 
and g: (Y,σ)→(Z,μ) be a mapping defined by g(a)=g(b)=c and g(c)=b, 
then it is easy to see that f is a closed map and αrps-closed map and g is 
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strongly αrps- closed map, but g of: (X,τ)→(Z,μ)) is not strongly αrps-
closed map, since for the closed set A={b}} in {X, τ}, then g of (A)=g of 
(A)=g of ({b})=g(f({b})=g({b})={c}, which is not closed set in(Z, μ). 

The following proposition give the condition to make Remark true: 

Proposition

Let f:(X, τ) ⟶ (Y, σ) and g: (Y, σ) →(Z, μ) be two any maps, then g 
of (X,τ) →(Z, μ) is a strongly αrps-closed map, if f is strongly αrps-closed 
map and (Z, μ ) is a T*1/2-space 

1.	 g is αrps-closed map. 

2.	 g is α*rps-closed map. 

Proof

Let A be a αrps-closed set in X, then f(A) is a closed set in (Y, σ), by 

Remark: [∀ closed set is an αrps-closed set], since g is αrps-closed 
map. Thus g(f({A}) is aαrps-closed set in (Z, μ). That is g(f({A})=g of (A) 
is an αrps-closed set in (Z, μ). Also, since Z is T*1/2-space, so we get g of 
(A) is closed set in (Z, μ).Therefore, g of: (X,τ)→(Z, μ) is stronglyαrps-
closed map. 

Proposition 

Let f:(X, τ) ⟶ (Y, σ) and g: (Y, σ) →(Z, μ) be two any maps, then g 
of :(X,τ) →(Z, μ) is strongly αrps-closed map, if g is strongly αrps-closed 
map, X is a T*1/2-space and 

1.	 f is a closed map 

2.	 f is a αrps-closed map. 

Proof

(i) Let A be αrps-closed set in X, since X is a T*1/2-space, then by 
using proposition we get A is a closed set in X. Thus, f(A) is a closed set 
in Y, by remark, if (A) is an αrps-closed set inY. Also, since g is strongly 
αrps-closed map. Thus, g(f({A}) is a closed set in Z. That is g(f({A})=g of 
(A) is a closed set in Z. Hence, g of (X,τ)→(Z, μ) is strongly αrps-closed 
map. 

Proposition: Let f:(X, τ) ⟶(Y, σ) and g: (Y, σ) →(Z, μ) be two any 
maps 

(i)	 if g of: (X,τ) →(Z, μ) is strongly αrps-closed map and f is 
continuous surjective map, then g is a αrps-closed map. 

(ii)	 if g of: (X,τ) →(Z, μ) is strongly αrps-closed map and f is strongly 
αrps-continuous surjective map, then g is strongly αrps-closed 
map 

Proof (i)

Let A be a closed set in Y, since f is continuous, then f−1(A) is a 
closed set in (X,τ), by Remark(2-2)[∀ closed set is an αrps-closed set], 
so we get f-1(A) is a αrps-closed in X. Also, since g of: (X,τ)→(Z,μ) is a 
strongly αrps-closed map, thus g of (f-1(A)is a closed set in (Z,μ) and 
Remark(2-2)[∀closed set is anαrps-closed set], hence g of (f-1(A) is an 
αrps-closed set in (Z, μ). That is g of (f-1(A))=g(f(f-1(A)=g(A), hence 
g(A) isαrps-closed set in (Z, μ) since, f is subjective. Therefore, g is 
αrps-closed map. 

Proof (ii)

Let A be a αrps-closed set in Y. Since f is strongly αrps-continuous. 
Then, f-1(A) is a closed set in X, by Remark [∀ closed set is an 

αrps-closed set], so we get f-1(A) is a αrps-closed in X. Also, since g 
of (X,τ)→(Z, μ) is strongly αrps-closed map, hence map, hence g of 
(f-1(A) is a closed set in (Z, μ), since, f is subjective. That is g of 
(f-1(A))=g(f(f-1(A))=g(A), hence g(A) is closed set in Z. Therefore, g is 
strongly αrps-closed map. 

In the following, we give other type of αrps - closed maps which is 
called almost αrps - closed map. 

Definition

A map f: (X, τ) ⟶ (Y, σ) is called almostαrps-closed map if f(A) is 
αrps-closed set in (Y, σ), for every regular closed set A in( X, τ). 

Proposition

Every almost closed map is almost αrps- closed map. 

Proof: Let f: (X, τ) ⟶ (Y, σ) be a almost closed map and A be a 
regular closed set in (X, τ). Then, f(A) is a closed set in (Y, σ) and by 
using remark we get f(A) is an αrps-closed set in (Y, σ). Hence, f is 
almost αrps-closed map. 

Proposition

Everyαrps-closed map is almost αrps-closed map. 

Proof: Let f: (X,τ)⟶ (Y,σ) be an αrps-closed map and A be a regular 
closed set in (X,τ). Since (∀ regular closed [3]). Then, A is a closed set in X. 

Thus, f(A) is an αrps-closed set in (Y, σ). Hence, f is almost αrps- 
closed map. 

Corollary 

1.	 Every closed map is almostαrps-closed map. 

2.	 Everyα*rps-closed map is almost αrps-closed map. 

3.	 Every strongly αrps-closed map is almostαrps-closed map. 

Proof: The converse of proposition and corollary need not be true 
in general. 

Example

Let X=Y={a, b, c} with the topologies τ={X, θ, {a}} and σ={Y, θ, {a}, 
{b}, {a, b}}, where αRPSC(X,τ)={X, θ, {b}, {c}, {b, c}}RC(X,τ)={X,θ} and 
αRPSC(Y, σ)={Y, θ, {c}, {a, c}, {b, c}}. Define f:(X, τ)→(Y, σ)by f(a)=c 
f(b)=a and f(c)=b. Then, it is clear that f is almost αrps-closed map but 
is not closed map (αrps-closed, α*rps-closed and strongly αrps-closed)
map, since for closed set A={b, c} in (X, τ), f(A)=f({b, c})={a, b} is not 
closed and (αrps-closed )set in Y. 

Example

Let X=Y={a, b, c} with the topologies τ={X, θ, {a}} and σ={Y, θ, {a}, 
{a, c}}, where RC(X, τ)={X, θ, {b, c}} and αRPSC(Y, σ)={Y, θ, {b}, {c}, 
{b, c}}.

Define f:(X, τ)→(Y, σ) by f(a)=b, f(b)=f(c)=c. Then, it is clear that 
f is almost αrps-closed map but is not almost closed map, since for 
regular closed set A={b, c} in (X, τ), f(A)=f({b, c})={c} is not closed in (Y, σ). 

The following proposition give the condition to make, proposition 
and corollary are true: 

Proposition

If f: (X, τ) →(Y, σ) is almost αrps-closed map and (Y, σ) is a T*1/2-
space, then f is a almost-closed set. 
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Proof: Let A be a regular closed set in (X, τ), since f is a almost 
αrps-closed map Then, f(A) is an αrps-closed set in Y. Also, since Y is a 
T*1/2space, then by proposition. we get, f(A) is a closed set in Y. Hence, 
f is almost-closed map. 

Proposition

If f: (X,τ)→(Y, σ) is almost αrps-closed map and X is a locally 
indiscrete space, then f is αrps-closed set. 

Proof

Let A be a closed set in (X, τ), since X is a locally indiscrete, then by 
definition. We get, A is a regular closed set in X. Also, since f is a almost 
αrps-closed map. Then, f(A) is an αrps-closed set in (Y, σ). Therefore, 
f is αrps-closed map. 

Proposition: Let f: (X, τ) →(Y, σ)be almost αrps- closed map and X 
be a locally indiscrete space and Y be a T*1/2space, then f is a closed set. 

Proof: Let A be a closed set in (X, τ), since X is a locally indiscrete, 
then by definition we get, A is a regular closed set in X. Also, since f is a 
almost αrps- closed map. Then, f(A) is an αrps-closed set in (Y, σ) and 
since Y is a T*1/2space, then by proposition we get f(A) is a closed set in. 

Proposition

Let f: (X,τ) →(Y, σ) be almost αrps-closed map and X be a locally 
indiscrete space and T*1/2-space, then 

1.	 f is aα*rps-closed set. 

2.	 f is a strongly αrps-closed set if Y is a T*1/2space. 

Proof: (i) Let A be a αrps-closed set in (X, τ), since X is a T*1/2space, 
then by proposition. we have, A is a closed set in X and since X is a 
locally indiscrete, then by definition. we get, A is a regular closed set 
in X. Also, since f is a almost αrps-closed map. Then, f(A) is an αrps-
closed set in (Y, σ). Therefore, f is an α*rps -closed set. 

Proof: (ii) Let A be a αrps-closed set in (X, τ), since X is a T*1/2space, 
then by proposition. we have, A is a closed set in X and since X is a 
locally indiscrete, then by definition, we get, A is a regular closed set 
in X. Also, Thus, f(A) is an αrps-closed set in (Y, σ). Also, since Y is 
a T*1/2space Hence, f(A) is a closed set in Y. Therefore, f is a strongly 
αrps-closed set. 

Remark: The composition of two strongly αrps-closed maps need 
not be strongly αrps-closed map in general, the following example to 
show that. 

Example: Let X={a, b, c, d }, Y=Z={a, b, c} with the topologies τ={X, 
θ, {a}, {b}, {a, b}, {b, c}, {a, b, c}, { a, b, d }},σ={Y,θ,{a}},μ={Z,θ,{a},{b,c}}
where RC(X, τ)={X,θ,{a,d},{b,c,d}}}, RC(Y, σ)={Y, θ},RC(Z,θ){a},{b, 
c}}, αRPSC(Y, σ)={Y, θ, {b},{c}, {b, c}} and αRPSC(Z, μ)={Z, θ, {a}, {b, 
c}} Define f:(X, τ)→(Y, σ) by f(a)=f(d)=b, f(b)=f(c)=c and g: (Y,σ)→(Z,μ) 
be an identity map, then it is easy to see that f and g are almostαrps-
closed map, but g of: (X,τ)→(z,μ)) is not almostαrps-closed map, since 
for the regular closed set A={a,d} in {X, τ} g of (A)=g of ({a,d})==g(f({a,
d}))=g({b})={b}, which is not αrps-closed set in (Z,μ). Hence, g of is not 
strongly αrps-closed map the following proposition give the condition 
to make remark is true: 

Proposition

If f:(X, τ)⟶(Y, σ) and g:(Y, σ)→(Z, μ) are two almost αrps-closed 
maps and Y is locally indiscrete and T*1/2-space, then g of: (X,τ)→(Z, μ) 
is a almost αrps-closed map. 

Proof: Let A be a regular closed set in X, thus f(A) is an αrps-closed 
set in Y. Since, Y is a T*1/2space, then by proposition. we get f(A) is 
a closed set in Y. Also, since Y is a locally indiscrete, hence f(A) is a 
regular closed set in Y, since g is almost αrps-closed map. then g(f(A)) 
is a αrps-closed set in Z. But g(f(A))=g of (A). Therefore, g of: (X,τ) →(Z, 
μ) is a almost αrps-closed map. The proof of the following proposition 
it is easy. 

Proposition

Let f:(X, τ)⟶(Y, σ) and g:(Y, σ)→(Z, μ) be two maps, then g of 
(X,τ)→(Z,μ) is a almost αrps-closed map, if f is almost αrps-closed and 
g is Figure 1.

(1) α*rps -closed map. 

(2) Strongly αrps-closed map. 

Remark: Here in the following diagram illustrates the relation 
between the 𝛂rps-closed mapping types (without using condition), 
where the converse is not necessarily true.
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