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Introduction
Tumors of the Central Nervous System (CNS) collectively represent 

the most common solid tumors of childhood, accounting for 15%-20% 
of pediatric malignancies [1]. Despite advances in modern medicine, 
CNS tumors represent the most common cause of cancer-related deaths 
in children [1]. Early and accurate tumor diagnosis remains critical to 
treatment planning, to family counseling, and ultimately, to improving 
outcomes [2,3]. While imaging offers potential for pre-surgical diagnosis, 
final tumor diagnosis relies on histopathology of surgical specimens.

Despite the high incidence of CNS tumors among solid childhood 
cancers, CNS tumors nevertheless are relatively rare, with an incidence 
rate of 5.7 per 100,000 person-years in the United States [4]. This 
presents challenges for practicing pathologists outside of major tertiary 
care referral centers, who may infrequently encounter these tumors.

It is also well-known that discordances in histologic diagnosis of 
pediatric pathologies are not infrequent upon second review, with CNS 
tumors among the most frequently discordant pathologic diagnoses in 
the field of pediatrics [5,6]. Potential contributing factors include local 
pathologist perception of the cases as being difficult; unusual histological 
features; discordance between clinical presentation and histology; and 

*Corresponding author: Kristen W Yeom, Pediatric Neuroradiology, Lucile 
Packard Children’s Hospital and Stanford University, California, United 
States, E-mail: bret.mobley@vumc.org

Received date: 15-Apr-2022, Manuscript No. JCEP-22-61133; Editor assigned: 
18-Apr-2022, PreQc No. JCEP-22-61133 (PQ); Reviewed: 29-Ap-2022, QC 
No.JCEP-22-61133; Revised: 06-May-2022, Manuscript No. JCEP-22-61133(R); 
Published: 13-May-2022, DOI: 10.4172/2161-0681-22.12.411 

Citation: Campion AW, Bala WA, Tam L, Lavezo J, Harmsen H, et al. (2022) 
Pathologist-Guided Approach to Deep Learning Prediction of Pediatric Posterior 
Fossa Tumor Histology. J Clin Exp Pathol 12: 411.

Copyright: © 2022 Campion AW, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited.

Pathologist-Guided Approach to Deep Learning Prediction of Pediatric 
Posterior Fossa Tumor Histology
Andrew W Campion1, Wasif A Bala2, Lydia Tam3, Jonathan Lavezo4, Hannah Harmsen5, Seth Lummus6, Hannes Vogel7, Bret Mobley8 and 
Kristen W Yeom9*

1Diagnostic Radiology, Stanford University School of Medicine, California, United States
2Diagnostic Radiology, Emory University School of Medicine, Georgia, United States
3Department of Radiology,Stanford University, California, United States 
4Anatomic Pathology and Neuropathology, Texas Tech University Health Sciences Center, Texas, United States 
5Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Tennessee, United States 
6Department of Physiology and Nutrition, University of Colorado, Colorado Springs, Colorado, United States 
7Pediatric Pathology, Lucile Packard Children’s Hospital and Stanford University, California, United States 
8Division of Neuropathology, Associate Professor, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Tennessee, United States
9Pediatric Neuroradiology, Lucile Packard Children’s Hospital and Stanford University, California, United States

incorporation of molecular testing in the updated WHO classification 
system [6].

Given the recent advances in computer vision applied in medicine, 
we sought to use deep learning strategies in the automation of tumor 
histology diagnosis. We targeted Posterior Fossa (PF) tumors, 
specifically, medulloblastoma (MB), Pilocytic Astrocytoma (PA), and 
Ependymoma (EP), given their relatively more common occurrence 
among CNS tumors in children. Further, given the well-known 
challenges of AI training inherent in histology due to background 
noise and large histology slide sizes, we proposed the use of screen shot 
images of relevant tumor regions captured by clinical pathologists at the 
microscope for AI training.

Abstract
Background: CNS tumors remain among the most frequently discordant pathologic diagnoses in the field of 

pediatrics. In this study, we examined neuropathologist-guided deep learning strategies towards automation of tumor 
histology diagnosis targeting the three most common pediatric posterior fossa (PF) tumors.

Methods: A retrospective chart review identified 252 pediatric patients with histologically confirmed PF Pilocytic 
Astrocytoma (PA); Ependymoma (EP); medulloblastoma (MB) across two independent institutions: Site 1: PA(n=87); 
EP(n=42); MB(n=50); Site 2: PA(n=36); EP(n=9); MB(n=28). The dataset comprised images of tumor-relevant 

Resnet-18 architecture was used to develop a 2D deep learning model  and to assess model generalization across 
the two sites. Holdout test set was used to assess each of the model performance.

Results: Model trained exclusively on Site 1 cohort achieved an accuracy of 0.75 and a F1 score of 0.61 on test 
set from Site 1; and an accuracy of 0.89 and F1 score of 0.77 on Site 2. Fine-tuning on a subset of cohort from Site 
2 did not significantly improve model performance.

Conclusion: We demonstrate a potential role implementing AI for histologic diagnosis of the three most common 
pediatric PF tumors that can generalize across centers. Further, we identify feasibility of AI learning that uses 

Future study could examine AI model developments that use tumor segmentations of histology slides in comparison 
to expert pathologist-guided image capture as forms of tumor labels.

regions captured by  neuropathologists while  viewing histology slides at 20×  magnification  at  the  microscope.  A 

histology images captured by neuropathologists at the microscope and thereby incorporates expert human behavior. 
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Material and Methods
Study cohort

We conducted a retrospective study across two independent 
institutions (Stanford University [Site 1] and Vanderbilt University [Site 
2]) after the IRB approval. The inclusion criteria were: 

• Pathologically confirmed diagnosis of the following pediatric 
posterior fossa tumors: medulloblastoma, pilocytic astrocytoma, 
or ependymoma,

• Patients were aged 1 day to 19 years, and 

• Hematoxylin and Eosin (H&E) glass histology slides were 
available for review by a neuropathologist. Patients were excluded 
if the tumor histology diagnosis was unclear. 

Histology dataset

Neuropathologists from each site independently viewed individual 
histology slides under a microscope at 20× and captured 4800 × 3600 
pixel screenshot images with 72 × 72 dpi resolution centred over a tissue 
region representative of the brain tumor. Effort was made to reduce 
image capture of normal tissue, white space, and processing artifacts. 

Dataset distribution for training

The data were stratified by tumor type to ensure an equal distribution 
of tumor types in both the training set and validation set. For each site, 
80% of the data served as training and 20% was withheld from the 
training set to serve as a test set to assess the final model performance. 

Experimental overview

We conducted the following experimental approaches: 

Phase 1: Develop a deep learning algorithm using solely Site 1 data 
and test its performance on test sets from Site 1 and Site 2.

Phase 2: Fine-tune the best performing model from Phase 1 using 
a subset of the Site 2 cohort and assess model performance on test sets 

from Site 1 and Site 2.

Model architecture

We used ResNet architectural backbone pretrained on the Image 
Net dataset, a compilation of over 14 million images of everyday 
objects [7,8]. Due to the relatively small cohort size, we used the 
smallest available pretrained architecture with 18 layers to reduce risk 
of overfitting. The pretrained ResNet-18 architecture was modified to 
classify the three PF tumor classes: PA, EP, MB.

Image pre-processing

Pixel values were normalized per PyTorch pretrained model 
guidelines [9]. All images contained three (i.e., RGB) color channels. 
We performed several data augmentations for training. Each image 
used for model training had a 50% probability of rescaling to 224 × 224 
dimensions or random cropping of an unmagnified 224 × 224 sized 
original image. In addition to these rescaling options, each image in the 
train set had a 50% probability of vertical or horizontal flip. Validation 
and test set images were rescaled to 224 × 224 to allow the model 
to analyze the image but were not otherwise manipulated; no data 
augmentations were applied to validation or test set images.

Model training

All models were trained using the Python 3.6 programming 
language and the PyTorch deep learning framework and a NVIDIA 
TitanXp Graphic Processing Unit with 12 GB of memory [9]. During 
training, all layers of the model, including the pretrained convolutional 
layers, were fine-tuned on the histology training data and trained to 
minimize classification cross entropy loss. The Adam optimizer was 
used to update the weights of the model with each iteration [10]. We 
conducted a two-phase experimental approach, as shown in Figure 1. 

Phase 1: Develop a deep learning algorithm using solely Site 1 data 
and test its performance on test sets from Site 1 and Site 2. In Phase 
1, during which the model only had access to Site 1 training data, the 
model was trained for 10 epochs with a batch size of 64 images and a 
learning rate of 0.001. Random majority subset (80%) of data from Site 
2 served as the test set.

Figure 1:  Model architectures of medulloblastoma; astrocytoma; ependymoma.



Citation: Campion AW, Bala WA, Tam L, Lavezo J, Harmsen H, et al. (2022) Pathologist-Guided Approach to Deep Learning Prediction of Pediatric 
Posterior Fossa Tumor Histology. J Clin Exp Pathol 12: 411.

Page 3 of 5

J Clin Exp Pathol, an open access journal Volume 12 • Issue 3 • 1000411

Phase 2: Fine-tune the best performing model from Phase 1 using 
a subset cohort from Site 2 and assess model performance on test sets 
from Site 1 and Site 2. In Phase 2, during which the model was further 
fine-tuned on Site 2 training data, the model was trained for 5 epochs 
with a batch size of 64 images and a learning rate of 0.0001. Here, a 
random minority subset (20%) of data from Site 2 was used to fine-
tune the best performing model from Phase 1. Similar to Phase 1, the 
majority subset (80%) from Site 2 served as test set to determine the 
model performance.

Each model was trained with 5-fold cross validation, using a 
20% proportion of the training set as the validation set. During final 
evaluation, the model with the lowest total loss was evaluated on the 
test set to gauge performance. 

Statistics

We used a McNemar test to determine model performance between 
a model trained only on the Site 1 cohort versus a model trained on Site 
1 and fine-tuned with the Site 2 cohort.

Results
Study cohort

A total of 252 subjects met the inclusion criteria: 179 from Site 1 
and  73  from  Site 2. The tumor distribution were as follows: Site 1: 
PA (n=87); EP (n=42); MB (n=50); Site 2: PA (n=36); EP (n=9); MB 
(n=28). Total image counts by institution are shown in Table 1 and the 
data distribution for Phase 1 and 2 experiments are shown in Tables 2 
and 3, respectively. 

Phase 2: The second model, i.e., model from Phase 1 that is fine-
tuned with a subset of data from Site 2, achieved an accuracy of 0.75 and 

Stanford Vanderbilt Total

Pilocytic astrocytoma 87 36 123

Medulloblastoma 50 28 78

Ependymoma 42 9 51

Table 1: Total image counts by institution.

Stanford 
training set

Stanford test 
set Vanderbilt test set 

Pilocytic astrocytoma 69 18 29

Medulloblastoma 40 10 23

Ependymoma 34 8 7

Table 2: Total image counts in training and test sets for Phase 1.

Stanford 
training set

Vanderbilt 
training set 

Stanford 
test set

Vanderbilt test 
set

Pilocytic astrocytoma 69 7 18 29

Medulloblastoma 40 5 10 23

Ependymoma 34 2 8 7

Table 3: Total image counts in training and test sets for Phase 2.
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Figure 2: (A) Stanford (B) Vanderbilt, sensitivity and specificity for tumor 
detection of different tumor types for Phase 1.
Note:  Sensitivity,  Specificity

a F1 score of 0.65 on holdout test set from Site 1. This model achieved 
an accuracy of 0.95 and F1 score of 0.92 when tested on holdout test set 
from Site 2. 

Performance metrics are summarized in Figures 2-5. 
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Figure 3: (A) Stanford (B) Vanderbilt, Sensitivity and specificity for tumor 
detection of different tumor types for Phase 2.
Note:  Sensitivity,  Specificity

Phase 1: Model trained  exclusively on Site 1 cohort  achieved an 
accuracy of 0.75 and a F1 score of 0.61 on holdout test set from Site 
1. This model achieved an accuracy of 0.89 and F1 score of 0.77 on 
previously unseen cohort from Site 2. 

Model performance
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Figure 4: (A) Stanford (B) Vanderbilt, Confusion matrix for Phase 1.
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Figure 5: (A) Stanford (B) Vanderbilt, Confusion matrix for Phase 2.

Figures 2 and 3 show bar plots comparing sensitivity and specificity 
for prediction on individual tumor pathologies from Phase 1 and 
Phase 2 experiments, respectively. Figures 4 and 5 illustrate Confusion 
matrices that showcase model prediction against ground truth labels 
for each tumor pathology from the test set from Phase 1 and Phase 2 
experiments, respectively. 

The McNemar test comparing the performance of these two 
classifiers had a value of 1.0 and a p-value of 1.0 on the test set from 
Site 1. For the Site 2 test set, the McNemar test was found to have a 
value of 0.0 and a p-value of 0.25. These findings suggest that the 
performance of the model fine-tuned with a small subset of external 
data did not significantly differ from the model trained on data from a 
single institution.

Discussion
Investigations of CNS tumors have dramatically increased in the 

past decade with new insights into molecular biology, improvements 
in imaging, as well as increased utilization of immunohistochemical 
biomarkers. While various modalities often play complementary 
roles for diagnosis, histopathology remains fundamental to tumor 
diagnosis and treatment planning. With a trend toward the digitization 
of pathology slides, pathology and laboratory medicine as a specialty 
is uniquely enriched with opportunities for integrating AI-based tools 
that assist and educate pathologists, enhance workflow efficiency and 
contribute to precision in diagnosis [11]. 

Despite potential roles for AI in pathology, large data sets of 
high-resolution pathology slides and general lack of annotations pose 
hurdles to AI model development to a greater extent than in radiology. 
Prior studies have applied deep learning strategies on histology of 
breast cancer or lymphoma for more precise evaluation [12,13], but at 
present, no study has examined the potential role of AI on pediatric 
brain tumors. Here, we present a histology-based deep learning model 
predictive of the three most common pediatric PF tumors rather than 
performing labor-intensive over tumor boundaries, we used images of 
diagnostically relevant tumor regions of pathology slides that expert 
neuropathologist captured while viewing at the microscope and thereby 
mirrored real world behavior of pathologists. We further assessed 
generalizability of this approach to model development. 

Our base model, trained exclusively on Site 1 cohort, achieved an 
accuracy that ranged 75-89%, with an F1 score that ranged 61%-77% 
when evaluated on holdout test sets from Sites 1 and 2. 

Overall, our pilot results point to a potential AI role for augmenting 
pathologic diagnosis that can either serve as a “second look” for general 
pathologists who may be less familiar with rarer tumor histology 
[5,6], or even as an educational tool for pathologists-in-training. We 
show that this is feasible even when using pathologist-guided images 
captured at the microscope, without the use of digitized images derived 
from glass histology slides and without tumor margin segmentations. 

Despite promising results, the performance metrics do suggest 
room for improvement. One contributor might relate to variations 
in histology slides across institutions, including artifacts and slide 
preparation differences. Examples of artifacts might include tissue folds, 
blurred regions, and shadowing, which could confer unpredictable 
effects on model training [14,15]. Differences in slide preparation, such 
as slice thickness variation or length of staining time, the so-called 
“batch effects,” add additional variability [14,15]. Nevertheless, high 
predictive performance on Site 2 suggests model durability. Since fine-

h tuning on external data (P  ase 2) did not alter model performance, it 
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There are several limitations to this study. Our sample size was small, 
which in part relates to the inherent rarity of pediatric brain tumors. 
This also explains lower predictive performance of EP tumors, which 
were fewer compared to PA and MB tumors. To mitigate this problem, 
we used pathologist-driven, human-guided images of relevant tumor 
histological regions captured at the microscope, rather than tumor 
segmentation methods, the latter being typically used in AI training. 
We also combined two-institution data to assess model generalizability. 
While the use of raw digitized histology slides could add value, this 
was not possible given our relatively small cohort size and large amount 
of noise (e.g., normal tissue, white spaces, and processing artifacts) 
inherent within the raw histology data.

Conclusion
This Study demonstrates the feasibility of AI learning using images 

captured by expert neuropathologists at the microscope    that mimics the 
real-world behavior of pathologists as a form of tumor labeling, rather 
than the use of manual tumor segmentations. Our model demonstrates 
a level of accuracy, sensitivity and specificity that, while certainly not 
suited to completely replace expert neuropathologists, could function 
as an adjunctive tool for general pathologists or students training in 
pathology seeking a supplemental tool. Future study could examine AI 
model developments that use tumor segmentations of histology slides 
in comparison to expert pathologist-guided image capture as forms of 
tumor labeling.

References
1. Udaka YT, Packer RJ (2018) Pediatric brain tumors. Neurol Clin 36: 533-556. 

2. Louis DN, Perry A, Reifenberger G, Deimling AV, Figarella-Branger D, et al. 
(2016) The 2016 World Health Organization classification of tumors of the 
Central Nervous System: A summary. Acta Neuropathol 131:803-820. 

3. Segal D, Karajannis MA (2016) Pediatric brain tumors: An update. Curr Probl 
Pediatr Adolesc Health Care, 46: 242-250. 

4. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, et al. (2016) CBTRUS 
statistical report: Primary brain and other central nervous system tumors 
diagnosed in the united states in 2009-2013. Neuro Oncol 18: v1-v75. 

5. Pollack IF, Boyett JM, Yates AJ, Burger PC, Gilles FH, et al. (2003) The 
influence of central review on outcome associations in childhood malignant 
gliomas: Results from the CCG-945 experience. Neuro Oncol 5: 197-207. 

6. Merabi Z, Boulos F, Santiago T, Jenkins J, Abboud M, et al. (2018) Pediatric 
cancer pathology review from a single institution: Neuropathology expert 
opinion is essential for accurate diagnosis of pediatric brain tumors. Pediatr 
Blood Cancer, 65. 

7. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image 
recognition. IEEE Trans Med Imag 770-778.  

8. Deng J, Dong W, Socher R, Li L, Kai Li, et al. (2009) ImageNet: A large-scale 
hierarchical image database. IEEE Trans Med Imag 248-255. 

9. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. (2019) PyTorch: An 
Imperative style, high-performance deep learning library. arXiv 1-12. 

10. Kingma DP, Ba J (2014) Adam: A Method for stochastic optimization. arXiv. 

11. Serag A, Ion-margineanu A, Qureshi H, McMillan R, Martin MS, et al. (2019) 
Translational AI and deep learning in diagnostic pathology. Front Med 6: 185. 

12. Mi W, Li J, Guo Y, Guo Y, Ren X, Liang Z, et al. (2021) Deep learning-based 
multi-class classification of breast digital pathology images. CMAR 13: 4605-
4617. 

13. Achi HE, Belousova T, Chen L, Wahed A, Wang I, et al. (2019) Automated 
diagnosis of lymphoma with digital pathology images using deep learning. Ann 
Clin Lab Sci 49: 153-160. 

14. Toro OJD, Atzori M, Otálora S, Rönnquist P, Müller H, et al. (2019) Convolutional 
neural networks for an automatic classification of prostate tissue slides with 
high-grade Gleason score. NPJ Digit Med 19: 113. 

15. Kothari S, Phan JH, Stokes TH, Wang MD (2013) Pathology imaging informatics 
for quantitative analysis of whole-slide images. J Am Med Inform Assoc 20: 
1099-1108. 

is  possible pixel-based relevant  features did  not significantly  differ 
across the two sites. 

https://www.sciencedirect.com/science/article/abs/pii/S0733861918312064?via%3Dihub
https://link.springer.com/article/10.1007/s00401-016-1545-1
https://link.springer.com/article/10.1007/s00401-016-1545-1
https://www.sciencedirect.com/science/article/abs/pii/S1538544216300165?via%3Dihub
https://academic.oup.com/neuro-oncology/article/18/suppl_5/v1/2590014?login=false
https://academic.oup.com/neuro-oncology/article/18/suppl_5/v1/2590014?login=false
https://academic.oup.com/neuro-oncology/article/18/suppl_5/v1/2590014?login=false
https://academic.oup.com/neuro-oncology/article/5/3/197/1061836?login=false
https://academic.oup.com/neuro-oncology/article/5/3/197/1061836?login=false
https://academic.oup.com/neuro-oncology/article/5/3/197/1061836?login=false
https://onlinelibrary.wiley.com/doi/10.1002/pbc.26709
https://onlinelibrary.wiley.com/doi/10.1002/pbc.26709
https://onlinelibrary.wiley.com/doi/10.1002/pbc.26709
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://projet.liris.cnrs.fr/imagine/pub/proceedings/CVPR-2009/data/papers/0103.pdf
https://projet.liris.cnrs.fr/imagine/pub/proceedings/CVPR-2009/data/papers/0103.pdf
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1412.6980
https://www.frontiersin.org/articles/10.3389/fmed.2019.00185/full
https://www.dovepress.com/deep-learning-based-multi-class-classification-of-breast-digital-patho-peer-reviewed-fulltext-article-CMAR
https://www.dovepress.com/deep-learning-based-multi-class-classification-of-breast-digital-patho-peer-reviewed-fulltext-article-CMAR
http://www.annclinlabsci.org/content/49/2/153.full.pdf
http://www.annclinlabsci.org/content/49/2/153.full.pdf
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10140/101400O/Convolutional-neural-networks-for-an-automatic-classification-of-prostate-tissue/10.1117/12.2255710.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10140/101400O/Convolutional-neural-networks-for-an-automatic-classification-of-prostate-tissue/10.1117/12.2255710.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10140/101400O/Convolutional-neural-networks-for-an-automatic-classification-of-prostate-tissue/10.1117/12.2255710.short?SSO=1
https://academic.oup.com/jamia/article/20/6/1099/2909332
https://academic.oup.com/jamia/article/20/6/1099/2909332

	Title
	Abstract
	Corresponding Author

