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Introduction
Linkages across ecosystems and within-ecosystem segregated 

habitats are fundamental components of all ecological systems, which 
can affect ecological compartments ranging from individual organisms 
to entire ecosystems [1-3]. Therefore, elucidating the constraints 
on ecosystem linkages is necessary for understanding ecological 
processes and functions, and is also in favor of ecosystem services 
and management [1-3]. In lakes, linkages of distinct habitats can 
influence productivity, resource abundance, consumer behavior, and 
trophic interactions in the basic components of food webs cross spatial 
boundaries [1-3]. Recent researches have importance of linkages of 
Lake Ecosystem, including benthic–planktonic and subsurface–surface 
within a particular aquatic ecosystem, and river–lake, wetland–lake, 
and terrestrial–lake among ecosystems [3-6]. These linkages are 
coupled by nutrient and energy flows through physical and biological 
activities.

As one of the major characteristics of within-lake food webs, the 
linkage of benthic and planktonic (or pelagic) food webs has received 
a great deal of attention in recent aquatic studies [2,3]. The magnitude 
of planktonic-benthic linkage is constrained by various factors, such 
as lake trophic status, morphometry, and hydrodynamics [2,3,7]. 
Eutrophication is one of the most common water quality problems that 
affect the status of lake trophic worldwide. In eutrophic ecosystems, 
the increased input of anthropogenic nutrients from watersheds with 
intense human activity [8,9] causes the imbalance in the primary 
producers of the food web; this results in high levels of phytoplankton 
biomass[10] that, in turn, alters the pathways and the magnitude of 
planktonic-benthic linkage in lakes. Therefore, planktonic energy 
subsidy to benthic consumers may increase [3,11]. However, this 
hypothesis has been rarely tested experimentally in planktonic-benthic 
linkage in eutrophic lakes.

Assessment of the responses of benthic food web to resource 
perturbations in plantonic food web leads to a comprehensively 

understanding of the energy pathways and the subsequent dynamics 
of food webs [2,3,12]. Therefore, in a f﻿ield experiment manipulating 
nutrients and afterwards phytoplankton abundance, we ask how 
changes in phytoplankton abundance affect planktonic energy subsidy 
to benthic consumers across nutrient levels. We focus our analysis 
on quantifying planktonic energy subsidy to benthic food web that 
indicates the importance of direct resource perturbations of planktonic-
benthic linkage in ecosystems. 

Materials and Methods
Mesocom experimental design

To investigate the effect of planktonic energy subsidy on benthic 
zoobenthos, we manipulated nutrient supply of both water column 
and sediment in 8 polyethylene 8000L mesocosms in Lake Donghu 
near the Donghu Experimental Station of Lake Ecosystems, Chinese 
Ecosystem Research Network. We used a full-factorial design, with 
2 levels of water nutrients (high and low) and 2 levels of sediment 
nutrients (high and low) for a total of 4 treatments with 2 replicates 
of each. Nutrient supply in both water column and sediment was 
manipulated by f﻿illing the mesocosms with water and sediment 
(thickness 5cm) from a hypereutrophic site (water TP=0.172 ± 0.022 
and sediment TP=4.017 ± 0.017 mgg-1) and a mesoeutrophic site (0.025 
± 0.003 and sediment TP=0.777 ± 0.031 mgg-1) at the lake, providing 
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Abstract
Linkages across habitats between habitats are fundamental components of ecological processes. As a major 

characteristic of within-lake food webs, linkage of benthic and planktonic food webs has received a great deal of 
attention in recent aquatic studies. However, planktonic energy subsidy to benthic consumers has been infrequently 
tested in experiment. In a field experiment manipulating nutrients and phytoplankton abundance, we ask how 
changes in phytoplankton abundance affect planktonic energy subsidy to benthic primary consumers across nutrient 
levels. Our results suggest that the planktonic subsidy to benthic primary consumers depends on the phytoplankton 
abundance. Furthermore, highly taxon-specific planktonic energy subsidy to benthic primary consumers suggests 
that the benthic community composition partially determines the degree of the planktonic-benthic linkage. Because 
shallow and eutrophic lakes distribute worldwide, and many ecological functions are mediated by planktonic-benthic 
linkage, it will be important to consider these findings to protection and restoration of lake ecosystems.
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local assemblages of plankton and zoobenthos and allowing us to 
assess their response to nutrients. In addition, f﻿ishes were removed 
by netting before the experiment. In the sediment, three tolerate 
species of zoobenthos, Branchiura sowerbyi (Oligochaeta: tubif﻿icidae), 
Limnodrilus hoffmeisteri (Oligochaeta: tubif﻿icidae), and Tanypus 
chinensis (Diptera: Chironomidae), constitutes 80%–95% of the total 
benthic macro invertebrate density and biomass in this eutrophic lake 
[13,14]. The experiment lasted for 11 weeks from July 1 to September 
21, 2001, until the effect of planktonic energy subsidy on benthic food 
web was evaluated.

Nutrient analysis and phytoplankton monitoring
Total phosphorus concentration in the water column was measured 

by colorimetry after digestion of the total samples with K2S2O8+NaOH 
to orthophosphate [15]. Total phosphorus content in the sediment was 
measured by H2SO4-HClO4 digestion-molybdenum blue colorimetric 
method [15]. Phytoplankton samples were preserved with 1% acidif﻿ied 
Lugol’s iodine solution and concentrated to 30 ml after undergoing 
sedimentation for 48 h. After mixing, 0.1 ml concentrated samples 
were counted and phytoplankton species were identif﻿ied directly using 
a Leitz microscope with a magnif﻿ication of 400. Phytoplankton biomass 
was estimated from approximate geometric volumes of each taxon, 
assuming that 1 mm3 equaled 10-6 µg fresh weights. The geometric 
dimensions were measured on ~30 individuals for each dominant 
species in each sample.

Benthic invertebrate samplings 
Three abundant benthic macroinvertebrate species in enclosures, 

including B. sowerbyi, L. hoffmeisteri, and T. chinensis, were sampled 
at the end of the experiment for stable isotope analyses by collecting 
constant surface sediments using an Ekman grab to gain enough 
analytical biomass. Animals were sorted and identif﻿ied from samples 
while alive, placed in f﻿iltered lake water overnight to clear their guts, 
then oven-dried to a constant weight at 60°C, before being f﻿inally 
ground to a f﻿ine homogeneous powder with a mortar and pestle for 
δ13C. Lipids were extracted using methanol-chloroform (2:1 by volume) 
because lipids are depleted in 13C [16,17]. The mortar and pestle were 
acid-washed and dried to prevent cross-contamination between 
samples. The powdered samples were kept in acid-washed glass tubes 
and sealed in desiccators with silica gel for future analysis.

Isotopic baseline sampling
Sedimentary organic matters and seston were collected at each 

mesocosms at the end of the experiment. After collection and transport 
to the laboratory, the samples were acidif﻿ied with superfluous 1 N HCl 
and oven-dried to a constant weight at 60°C. Samples were then ground 
to a f﻿ine homogeneous powder with a mortar and pestle. The mortar 
and pestle were acid-washed and dried to prevent cross-contamination 
between samples. The powdered samples were kept in acid-washed 
glass tubes and sealed in desiccators with silica gel for future analysis.

Stable isotope analyses
Stable carbon isotope ratios of seston, sediment organic matter, 

and invertebrate were analyzed with Delta Plus (Finnigan, German) 
continuous-flow isotope ratio mass spectrometer (CF–IRMS) directly 
coupled to an NC2500 elemental analyzer (Carlo Erba, Italy). The 
isotopic compositions of samples were expressed as δ13C notation using 
the following equation:
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where 13C/12C is the atomic ratios of the number of atoms in the sample 
or standard, δ is the measure of heavy to light isotope in the sample, 
and higher δ values denote a greater proportion of the heavy isotope. 
The international standard is Vienna Pee Dee Belemnite (VPDB). 
Carbonatite (IAEA–NBS18) was used as the international reference 
material; on a daily basis, an internal working standard, urea (δ13C=-
49.44‰), was used. More than 20% of the samples were analyzed for 
more than three times, and the standard deviations of δ13C replicate 
analyses were less than 0.2‰.

Modeling the planktonic energy subsidy of zoobenthos 

In the present study, the seston and sediment organic matter 
were used to quantify the isotopic baseline for benthic and planktonic 
energetic pathways. Since the diet of the zoobenthos was switched from 
the lake to the mesocoms, the new dietary δ13C signature was expected 
to manifest itself rapidly in the body tissues of the small invertebrates 
after several days as previous study suggested [18]. The δ13C values of 
the three dominant benthic species in each mesocoms at the end of the 
experiment were converted into proportions of planktonic and benthic 
energetic pathways with a two end-member mixing model using the 
software ISOERROR 1.04 [19]. When calculating mixing models, 
ISOERROR takes into account the variability in the δ13C of both the 
sources and the zoobenthos, and provides 95% conf﻿idence intervals 
around the estimated proportions.

Statistical Analysis 
To test the correlations between phytoplankton biomass and the 

percentage of planktonic energy, simple linear regression was selected 
which was performed using SPSS statistical software for Windows 
(Version 17.0, SPSS Inc.).

Results
At the end of the experiment which lasted for 11 weeks, total 

phosphorus concentration in water column varied between 0.07 and 
0.73 mg/L (Figure 1A), and total phosphorus content in sediment 
varied between 0.76 and 2.61 mg g-1 (Figure 1B) in the mesocosms. 
Total phosphorus concentration in water column was much higher in 
the treatments with high total phosphorus content in sediment than in 
those of low contents. Across all treatments, microscopic examination 
showed that Cyanophyta was dominant in phytoplankton (Figure 2). 
The total biomass of phytoplankton varied between 0.05 and 55.62 mg 
L-1. Biomass of phytoplankton was much higher in the treatments 
with high total phosphorus content in sediment than in those of low 
contents (Figure 2), and a signif﻿icant positive relationship between 
phytoplankton biomass and total phosphorus concentration in water 
column was observed across all mesocosms (F1, 6=18.012, p < 0.01, 
r2=0.757).

The contribution of planktonic energy subsidy to benthic animals, 
which was estimated using mixing models, ranged from 7.9% to 26.8% 
for B. sowerbyi (Figure 3A), from 45.5% to 95.0% for L. hoffmeisteri 
(Figure 3B), and from 13.9% to 84.4% for T. chinensis (Figure 3C), 
showing signif﻿icant intra-species difference across all mesocosms. 
In the treatments with high total phosphorus content in sediment, 
planktonic energy subsidy to zoobenthos was higher with high 
phytoplankton biomass in the water column than those treatments 
with low phytoplankton biomass in the water column at the end of 
the experiment (Figure 3A-3C). We used linear regression to better 
understand the phytoplankton production mediating the planktonic 
energy subsidy to B. sowerbyi (Figure 4A), L. hoffmeisteri (Figure 
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=0.490; Planktonic T. chinensis=27.455 + 1.024PB, F1, 6=12.941, p < 
0.05, r2 =0.682).

Discussion 
Benthic and planktonic food webs in shallow water bodies are 

thought to be linked by trophic relationships and by biologically-
mediated or physically-mediated resuspension or sedimentation 
processes [2,3,12]. Therefore, focusing only on benthic or only on 
planktonic components of aquatic food webs can lead to an ambiguous 
comprehension of the interactions between components in different 
habitats [3,12,20]. In natural water bodies, seston samples comprise a 
variable fraction of the particulate organic carbon and are not easily 
separated from non-phytoplankton particulate organic carbon [20-
23], which results in uncertainty in the evaluation of the importance of 
planktonic sources to the benthic food web using natural abundances 
of stable isotopes. Here, the results of our experiment provided a 
unique opportunity to test responses of planktonic energy subsidy to 
benthic invertebrates along a gradient of phytoplankton abundance, 
and to assess the magnitude of the responses.

In the experiment, the planktonic subsidy increases in Chironomidae 
and oligochaetes along the evident gradient of phytoplankton 
abundance, which supports the general paradigm claims that benthic 

4B), and T. chinensis (Figure 4C), respectively. There were signif﻿icant 
positive relationships between percentage of planktonic carbon 
in zoobenthos and the phytoplankton biomass (PB) (Planktonic 
B. sowerbyi=11.745 + 0.261PB, F1, 6=12.993, p < 0.05, r2=0.683; 
Planktonic L. hoffmeisteri=63.835 + 0.612PB, F1, 6=5.683, p < 0.05, r2 
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Figure 1: Total phosphorus concentration in water column (A) and total 
phosphorus content in sediment (B). Each point represents the value for a 
mesocosm at the end of the experiment. Horizontal lines represent treatment 
means.
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secondary production is strongly linked to planktonic primary 
production. This view has also been supported by f﻿ield observations that 
benthic secondary production is high in eutrophic lakes [24] and that 
benthic secondary production increases when lakes are experimentally 
fertilized [11,25,26]. With the enrichment of nutrients in eutrophic 
aquatic ecosystems, not only can zooplanktons benef﻿it from the 
increased phytoplankton production, many benthic invertebrates can 
also benef﻿it from and regulate increases in phytoplankton biomass 
or production [11,25,27] by direct f﻿ilter feeding or by collecting 
newly sedimented phytoplankton. For example, sedimentation of 
phytoplankton served as the major carbon resource in the production 
of benthic amphipods (Diporeia) in Lake Michigan [28]. Our study, 
along with others, clearly shows that benthic secondary production is 
strongly linked to pelagic production in eutrophic lakes.

Planktonic-benthic linkage can be affected by abiotic factors, 
such as lake morphometry, hydrodynamics and trophic status, all of 
which influence the magnitude of phytoplankton biomass, the rate of 
degradation, the velocity of downward transport, and the biological 
activities [3,5]. Increases in phytoplankton cause signif﻿icant increases 
in secondary production by enhancing the planktonic energy subsidy 
to both planktonic and benthic animals. In addition, benthic food 
web structure can play an important role in efficiency of converting 
planktonic resources into benthic invertebrate biomass [26]. In the 
current study, highly taxon-specif﻿ic planktonic energy subsidy to 

the three dominant invertebrate species suggests that the benthic 
community composition constrains the efficiency of planktonic energy 
subsidy to benthic food web. For example, a community dominated 
by macrofaunal consumers that graze directly on algal phytodetritus 
could transfer the energy from deposited diatoms to higher trophic 
levels (f﻿ish) more efficiently than a community with large populations 
of meiobenthic invertebrates [29].

The relative importance of planktonic energy subsidy to benthic 
food web provided the understanding of the key ecological processes 
that functionally link these habitats in aquatic ecosystems. For example, 
strong evidence has been provide that benthic invertebrate feeding on 
phytoplankton is widespread through f﻿ilter-feeding phytoplankton 
directly from the water column and/or collecting newly sedimented 
phytoplankton [20,24,30]. Thus, benthic animal can play an important 
role in organizing the planktonic community through their grazing 
or predatory activity [12,31,32]. In addition, extensive zoobenthivory 
can subsidize f﻿ish populations, leading to apparent competition, if not 
altering trophic dynamics and ecosystem processes, in the pelagic zone 
[33,34]. 

Conclusively, our results claims the generally accepted paradigm 
that benthic secondary production is strongly linked to pelagic primary 
production [2,3]. The linkage of benthic-planktonic food webs remains 
an important area for research considering that the majority of lakes 
globally are small and shallow [20,35], and that eutrophication is one of 
the most common water quality problems in lakes worldwide [36,37]. 
The planktonic energy subsidy to benthic food web documented here 
is probably characteristic to the majority of eutrophic lakes worldwide, 
and thus is important for protecting ecosystems and for restoring 
critical habitats of natural linkages before ecosystem structure and 
function return [1,3].
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