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radiation suggested that ionizing radiation was a risk factor for AD. 
Intranasal inhalation of radon gas could subject the rhinencephalon and 
hippocampus to damaging radiation that initiated AD [8]. The Alzheimer 
neurofibrillary tangle is composed of tau, which is one of the most 
common pathological hallmarks of AD and tau aggregation pathology 
at Braak stage 1 1 (out of 6 Braak stages) or beyond affects 50% of the 
population over the age of 45 [9-11]. Our recent review of the effect of 
the pre- and post-natal irradiation on animal models and human studies 
indicated many similarities in hippocampal neuropathology, cognitive 
impairment and relevant molecular mechanisms between Alzheimer’s 
disease and early life radiation exposure-induced neuropsychological 
disorders [12-16]. It suggests that irradiation of the brain in early human 
life may set abnormal developmental events into motion that starts from 
tau aggregation at the ages of  40s and 50s, leading to the development 
of Alzheimer’s Disease at the late stages of human life. At molecular 
level, pre- or post-natal irradiation induced brain oxidative stress [15], 
neuroinflammatory response [16,17], capillary loss or impairment of 
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Alzheimer’s disease (AD) is the most common form of dementia, 
and accounts for 60 to 80 percent of dementia cases. While about one-
third of all people age 85 and older may have Alzheimer’s disease, and 
the number of people with the disease doubles every 5 years beyond 
age 65, its early onset may start from the ages of 40s and 50s. Old age 
and genetic factor are two most important factors for the development 
of Alzheimer’s disease. Epidemiological studies have suggested that 
excessive alcohol consumption, smoking, environmental toxin such as 
pesticides (Dichlorodiphenyltrichloroethane or DDT), food additives 
(such as nitrogen-based chemicals which are converted to  toxic 
nitrosamines during cooking), contamination ( mussels contaminated 
with demonic acid), food components (two amino acids in seeds of 
certain legumes which enhance the action of the neurotransmitter 
glutamate), air pollution (such as aerosolized nickel nanoparticles, 
a component of air pollution) may also play important roles in the 
development of the disease [1]. Serious head injury, heart disease, 
diabetes, stroke, high blood pressure and high cholesterol which damage 
the heart and blood vessels may  be indirectly related to the development 
of AD due to the increase of β-amyloid (Aβ). 

Recent systematic review of bibliographic databases from 
PubMed, EMBASE, Cochrane Library and Web of Science suggests 
that occupational exposure to extremely low frequency magnetic 
fields (ELF-MF) to welders, electric utility workers, train drivers 
and sewing machine operators may increase the risk of AD [2,3]. 
Experimental studies indicated that low-dose radiation exposures (10 
cGy) induced genes not affected by high-dose radiation (2 Gy) and that 
low-dose genes were associated with unique pathways and functions. 
Nine neural signaling pathways had a high degree of concordance in 
their transcriptional response in mouse brain tissue after low-dose 
irradiation, in the aging human brain (unirradiated) and in brain tissue 
from patients with Alzheimer’s disease. Mice exposed to high-dose 
radiation did not show these effects and associations. It suggests that 
the molecular response of the mouse brain within a few hours after 
low-dose irradiation involves the down-regulation of neural pathways 
associated with cognitive dysfunctions that are also down-regulated in 
normal human aging and Alzheimer’s disease [4,5]. Galactic cosmic 
radiation consisting of high-energy, high-charged (HZE) particles such 
as (56) Fe at 100 mGy to 1 Gy reduced cognitive abilities. Acceleration of 
Aβ plaque pathology was observed in male Amyloid precursor protein 
(APP)/Presenilin 1 (PS1) mice. Further study suggested that (56) Fe 
particle-induced alterations in Aβ trafficking through the blood brain 
barrier might be related to plaque increase leading to AD [6]. Chronic 
low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) over 300 
days with cumulative doses of 0.3 Gy and 6.0 Gy, respectively induced a 
marked alteration in the phosphoproteome and an inhibition of cAMP 
responsive element binding protein (CREB) signalling. Both dose rate 
irradiations reduced the number of activated microglia in the molecular 
layer of hippocampus which paralleled with decreased levels of tumor 
necrosis factor alpha (TNFα) expression. At the lower dose rate of 
1mGy/day, alteration of Rac1-Cofilin signalling and lipid peroxidation 
was induced. The overlap of these changes with those of Alzheimer´s 
pathology suggests that low dose rate irradiation may be involved in the 
development of Alzheimer´s disease [7]. In the United States, analysis of 
AD death rates versus radon background radiation and total background 
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Figure 1: Pre- or post-natal irradiation induced brain oxidative stress, 
neuroinflammatory response, capillary loss or impairment of angiogenesis, up-
regulation of NMDA receptor subunit 1 (NR1) and NR2A, changes of synaptic 
proteins such as MAP-2 and PSD-95, accumulation of ubiquitin inclusion 
bodies,  autophagosome and down-regulation of  neurotrophic factors such 
as brain-derived neurotrophic factor (BDNF) may induce neuritic plaques, 
neurofibritlary tangles and neuropil threads leading to the development of 
alzheimer’s disease.
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angiogenesis [18], up-regulation of NMDA receptor subunit 1 (NR1) 
and NR2A [19], changes of synaptic proteins such as MAP-2 and PSD-
95 [20], accumulation of ubiquitin inclusion bodies, autophagosome 
[21] and down-regulation of neurotrophic factors such as brain-
derived neurotrophic factor (BDNF) [22] may induce neuritic plaques, 
neurofibritlary tangles and neuropil threads leading to the development 
of Alzheimer’s disease (Figure 1).

With increased use of X-ray Computed Tomography (CT scan) for 
medical diagnosis and radiotherapy, construction of more nuclear power 
plants worldwide and consequently potential nuclear contamination 
or accidents, occupational radiation exposure, frequent-flyer risks, 
manned space exploration and possible radiological terrorism, low 
dose/dose rate ionizing radiation research becomes much more 
imperative and urgent nowadays than ever before. Further study with 
lifetime monitoring of radiation effect of individuals with low dose /
low dose rate exposure may still be needed for establishing the close 
relationship between the radiation exposure and the development of 
Alzheimer’s disease.
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