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Recent whole-genome sequencing efforts have expanded on the 
traditional histologically-driven subtypes to further stratify cases 
according to the presence/absence of specific somatic mutations in 
oncogenes integral to cancer initiation, progression and metastasis. 
The development of ‘targeted therapeutics’ intended to specifically 
short-circuit regulatory pathways has led to the successful development 
of efficacious compounds, but only in patients that harbor the 
targeted mutation. Tissue confirmation is required for targeted 
therapy prescription. In this era of molecularly based therapeutics, 
it may be valuable if somatic driver mutations could be correlated to 
imaging parameters in order to uncover a molecular profile-imaging 
signature. Radiogenomics/radioproteomics or radiology imaging 
based phenotypes–patterns–could be used to predict the molecular 
subtype of cancers. Functional, morphological and molecular imaging 
techniques are routinely used to visualize, characterize, and measure 
biological processes at the cellular, subcellular, and molecular levels 
in living subjects. Developing a noninvasive means for identifying 
the molecular subtype of cancer cases that bypasses or compliments 
the need for tissue acquisition and assay and that can be performed 
in the clinic at the time of diagnosis would have the potential to be 
transformational in the accessibility of personalized cancer medicine. 

In daily clinical practice tissue confirmation of driver mutations 
is required for targeted therapy prescription. Consequently, patients 
with contraindicated, failed or indeterminate biopsies do not receive 
potentially beneficial targeted therapies. Non-invasive driver mutation 
correlation methods could: 

• Bring tissue characterization from the invasive/minimally
invasive realm into the clinic and on the other hand add an additional 
layer of imaging information (besides standard staging) into the 
portfolio of clinical data necessary to guide therapeutics and prognosis. 
This will allow us to better stratify patient treatments and ultimately 
improve survival. Achieving patient specific personalized medicine by 
integrating multiple features provided from imaging, pathology and 
clinical biomarkers; as well as developing complementary synergistic 
systems between clinical, biochemical, imaging and cellular/subcellular 
(molecular/gene) biomarkers is essential.

The goal would not be to replace tissue characterization but to 
complement it in cases where:

• Patients are not candidates for sampling of their tumors because
of poor overall performance status, significant co-morbidities or the 
presence of de novo disease or recurrences in anatomic locations that 
cannot be or are high risk to be accessed–vascular proximity.

• A biopsy sample is not diagnostic and/or does not yield sufficient
viable tumor cells for mutation detection, for e.g. if that biopsy sampled 
necrotic, fibrotic or inflammatory regions of the tumor.

• A sampling bias may yield false negative results due to the intra
and inter-lesional heterogeneous nature of molecular expression or the 
less sensitive (but less expensive) laboratory assays used on a standard 
basis (-a discordant result with the radiographic signature would 
therefore prompt re sampling of the tumor, or a repeat molecular 
analysis of tumor with standard immune histochemistry techniques or 
more advanced FISH techniques or another clinical option).

• A radiographic prognostic element could be added to the
molecular signature information.

Additionally the efficiency of the laboratory assays themselves may 
often result in as many as two to three weeks of delay until the mutation 
results are obtained, interpreted and returned to the oncologist for 
therapy selection. 

Information gathering and validation of these models or techniques 
is necessary. The use of radiogenomic and radioproteomics in a system 
model would then be possible. Systems biology, which focuses on 
understanding and characterizing organizational relationships and 
interactions of entities within biological systems would be incorporated 
into these models [1]. Systems Diagnostics can then integrate systems 
biology into a diagnostic platform, combining macro and micro 
histopathological data as well as clinical datasets, biochemical and 
imaging biomarkers in a synergistic fashion, therefore achieving a more 
comprehensive multilayered tumor profile of an individual patient [2]. 
This would potentiate our quest to optimize patient care and reach 
the ultimate individualized patient care with pharmacogenomics, 
radiogenomics, biochemical and bio-clinical genomics incorporated 
in a systems diagnostics ideal. Studying and creating models for how 
these systems work and may integrate together and compliment each 
other ultimately improving patient survival is crucial. The integration 
of imaging into systems diagnostics and personalized medicine is 
promising as it provides functional, molecular and morphological 
data. It is already routinely used, easily accessible, and may provide 
cost savings when considering the additional molecular analysis costs 
(including invasive sampling and tissue processing). Imaging can also 
be accurate, reproducible and widely available nationwide. 

This rationale has been explored in research but no attempt 
to investigate a clinical application has been initiated. A small 
amount of work has already been initiated looking more specifically 
at radiogenomics/radioproteomics in tumors [2-9], as well as 
prognosis and therapy modulation. Fukuda et al. showed a significant 
negative correlation between the metabolic rate of oxygen and 
Fluorodeoxyglucose (FDG) standardized uptake value (SUV) in 
human liver tumors [10]. Dooms et al. on the other hand found 
that the percentage of viable tumor cells and Ki-67 length density 
after induction chemotherapy were significantly lower in metabolic 
responders compared with non-responders [11]. Palsakas et al. 
identified an “FDG signature” in the basal subtype of breast cancer 
and correlated that with the over expression of the transcription 
factor c- MYC [9]. His group identified a higher FDG score for this 
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subtype of breast cancer. On the other hand, Van’t Veer et al. used 
DNA microarray analysis on primary breast tumors to identify a gene 
expression signature predictive of a short interval to distant metastases 
(‘poor prognosis’ signature) in patients without loco-regional lymph 
node metastasis at diagnosis [12]. In an effort to correlate genotype 
with protein expression, Rody et al. evaluated estrogen receptor, 
progesterone receptor and Human Epidermal growth factor Receptor 
2, in patients with breast cancer and reported more than 90% 
concordance when immunohistochemistry results were compared to 
messenger ribonucleic acid (mRNA) levels [13]. Simmons et al. among 
other investigators also described discordance of molecular profiling 
between primary and metastatic breast cancer lesions and predicted 
that in their study this changed management by at least 20% [14,15], 
which would suggest a heterogeneity also in radiographic signatures. 
Strauss et al. correlated compartmental parameters of FDG uptake and 
the gene expression values of cyclin-A [3]. Furthermore, Diehn et al. 
showed that a high Contrast to Necrosis ratio on MRI was a surrogate 
imaging phenotype for EGFR expression in Glioblastomas [6]. They 
also found that an infiltrative “radiographic signature” predicted a 
worse prognosis [6]. Zander et al. [16] and Sohn et al. [17] found that 
FDG and Fluorothymidine (FLT), respectively, early in the course of 
treatment could predict outcomes to EGFR-TKI treatment. Additional 
authors have explored radiolabelled nuclear techniques of direct 
imaging of EGFR expression [18,19]. Indirect EGFR correlations with 
an FDG signature have also been reported [20-24].

At Yale, we have begun exploring the association between FDG PET/
CT-derived imaging parameters and molecular phenotypes on selected 
case examples. An FDG PET/CT scan from a Stage IV esophageal 
cancer patient with a liver metastasis revealed an elevated SUVmax 
only in the primary tumor following FOLFOX and bevacizumab 
therapy. Molecular profiling of the ‘cold’ liver lesion demonstrated it 
to be HER2- by FISH compared with the HER2+ primary, supporting 
a discordant treatment response in the primary HER2+ lesion [25]. 
We have also started exploring molecular imaging phenotypes in 
breast cancer patients in order to discriminate HER2+ from HER2- 
tumors or even lesions. Our strategy also allowed us to discriminate 
between intravascular thrombosis in a patient with an intimal sarcoma 
not characterized clinically or on a contrast-enhanced CT, allowing 
for appropriate life saving therapy to be administered [26], as well as 
differentiating between benign and malignant skin lesions in a patient 
with epidermolysis bullosa and squamous cell skin cancer [27].

This radiogenomics, radioproteomics and systems diagnostics 
approach would create a tool that would be used in the clinic to 
personalize cancer therapy by prioritize which therapies are most 
appropriate for an individual.
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