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Abstract

Salinity has been a key abiotic constraint devastating crop production worldwide. Attempts in understanding salt
tolerance mechanisms has revealed several key enzymes and altered biochemical pathways inferring resistance to
crop plants against salt stress. The past decades have witnessed extensive research in development of salt tolerant
cultivars via conventional means, improvised by modern era molecular tools and techniques. Rice (Oryza sativa L) is
the staple food crop across several countries worldwide. Being a glycophyte by nature, its growth is severely
imparted in presence of excess salt. Rice is susceptible to salinity specifically at the early vegetative and later
reproductive stages and the response of the crop to excessive salt toxicity at biochemical and molecular level as
well as physiological level is well studied and documented. An understanding of the specific response of rice to ion
accumulation at the toxic level can aid in identifying the key factors responsible for retarded growth and limited
production of rice with the future scope of mitigating the same. The present review summarizes the differential
responses of rice, in particular, to salt toxicity enumerating the detailed morphological, physiological, biochemical
and molecular changes occurring in the plant. An attempt to explain salinity tolerance and its future scope and
implications in screening for salt tolerance has also been elucidated in the present study.
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Abbreviations
CHL: Chlorophyll, EC: Electric Conductivity, PCA: Principal

Component Analysis, POD: Peroxide Dismutase, RWC: Relative Water
Content, SOD: Superoxide Dismutase, STI: Salt Tolerance Index,
UPGMA: Unweighted Pair Group Method Arithmetic Average

Introduction

Rice, the major food crop
Rice (Oryza sativa L) belongs to the family Poaceae. The basic

chromosome number of rice is n=12. The species can be either diploid
or tetraploid. In this respect, Oryza sativa L. and Oryza glaberrima L
both are diploid species (2n= 24) [1]. The Asian cultivated rice (Oryza
sativa L) is the first fully sequenced crop genome and is a model crop
species. Rice is considered as a major food crop across major countries
worldwide. As a food crop, it forms the staple food of more than three
billion people accounting for about 50-80% of their daily calorie intake
[2]. It yields about one third of the total carbohydrate source. It
provides the considerable amount of recommended Zinc and Niacin
[3]. Rice protein is biologically richest as its digestibility is very high
(88%). It is the 2nd most important crop in the world after wheat,
covering almost 90% of area across Asia alone. The use of the crop
varies widely ranging from its use as food in cereals, snacks, brewed
beverages, flour, rice bran oil to its use in religious events across India.
The medicinal value of the crop adds on more to the list.

Rice cultivation has been predominant in India across ages. Rice
covers a global area of 156 million hectares of land producing about

650 million tons of crop [4]. Globally covering an area of 149.15
million ha area yielding about 550.19 million tones, this food crop is
being cultivated across an area of 44.6 million ha in India. India ranks
first in area and second in production following China, the largest
producer of rice. As an economically and industrially important crop
of India, rice provides about 23% of total world rice production and
45% of the total Indian food grain production. However with the
expanding population, the increase in production of the crop is the
urgent need of the hour in order to keep in accord to the national food
and livelihood security system. India is one of the leading exporters of
rice, in specific, basmati rice.

Salinity: an overview
Salinity as an abiotic stress widely limit the crop production severely

[5]. A saline soil is usually the reservoir of a number of soluble salts
such as Ca2+, Mg2+, Na+ and anions SO42-, Cl-, HCO3- with
exceptional amounts of K+, CO32-, and NO3-. A soil can be termed as
saline if its EC is 4 dS/m or more [6], (equivalent to approximately 40
mM NaCl) with an osmotic pressure of approximately 0.2 MPa.
Salinity is the condition when the EC is sufficient to cause yield
reduction of most crops. The pH of saline soils generally ranges from
7-8.5 [7]. However, the pH in saturated soil can vary provoking severe
crop damage (Table 1). The arid and semi-arid zones, characterized by
low precipitation and high evaporation are the most affected due to
minimum lixiviation of salt from the soil profile resulting in increased
salt accumulation. Salinity prone areas found in the arid and semiarid
zones are usually accounted to the accumulation of salts over ages.
Moreover, weathering of the parental rocks has accelerated the process
a lot [8,9]. Salinity is a well off natural phenomenon occurring near sea
shores due to sea water flooding.
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Electrical conductivity
(dS m-1 at 25°C) Crop response

0-2 Salinity effect is practically zero

4-Feb Reduction in yield of very sensitive crops

8-Apr Reduction in yield of most crops

16-Aug Only tolerant crops produce satisfactory yield

>16 Few highly tolerant crops produce satisfactory

Table 1: Crop response to salinity influenced by electrical conductivity
of saturated soil extract
Source: Adapted from [7].

However, use of irrigation and land clearing can be listed as one of
the many well-known anthropogenic reasons behind salinity [10].

Salinity has been a potential threat affecting almost 900 million ha of
land which nearly accounts for 20% of the globally cultivated area and
also half of the total irrigated land of the world [11,12]. Globally salt
affected area accounts to about 1 billion ha of land [13]. In India the
scenario accounts for about 8.4 million ha land affected by salinity
[14]. In India, irrigated land accounts for only 15% of total cultivated
land, nevertheless, it has at least twice the productivity of rain-fed land
and yields about one third of the world’s consumption. In accordance
to the above facts and keeping in view the present alarming scenario,
development of salt tolerant genotypes is definitely an urgent need of
the hour.

Salinity: A key abiotic constraint to production
Soil salinity is one of major abiotic stress devastating agricultural

production worldwide (Figure 1).

Figure 1: An overview of the plant responses under salt stress.

Globally, salt affected area accounts for about 800 million ha of land.
Interestingly, this figure covers more than 6% of total global area. Of
the 1500 million ha of dry land farming, 32 million ha (2%) are
accounted to be salt effected at varying degrees by secondary salinity
and to date more than 45 million ha (20%) of the total irrigated land
(accounting about 230 million ha) is saline [4].

Soil salinity as an abiotic stress can be traced back in time even
when human civilization did never existed or did not even started
agriculture as an occupation. However, the devastating effect of it has
been aggravated with the practice of irrigation and cultivation.

The effects of salinity in plants are many and interfere greatly with
the yield and production of the crops. Salinity affect the plants mainly
by imparting two types of stresses: Osmotic Stress (initial stage: caused
due to increased osmotic potential of rhizosphere due to high salt
concentration) and Ionic Stress (final stage: toxicity resulted by high
ionic concentration). The destructive effects of salinity include retarded
plant growth due to increased Na+ concentration [15], delay in
flowering and impaired fertility, with partial or complete grain loss
resulting in poor panicle development in rice [16-19], reduced P3+,K+

and Ca2+ concentrations [13], inhibition of photosynthetic activity
[20-23].

Citation: Ghosh B, Ali Md N, Saikat G (2016) Response of Rice under Salinity Stress: A Review Update. J Res Rice 4: 167. doi:
10.4172/2375-4338.1000167

Page 2 of 8

J Res Rice
ISSN:2375-4338 JRR, an open access journal

Volume 4 • Issue 2 • 1000167



Plants vary greatly in their response the salinity. The variation in
response is random as salinity is a polygenic trait. NaCl being the most
soluble and predominant salt, almost all plants have adapted
mechanisms to regulate its concentration. It may be via preferential
selection of ions, such as K+ and NO3- commonly present in low
concentrations or via effective exclusion of Na+ and Cl- by roots [24].
Halophytes, the natural flora of highly saline soils evolved against
glycophytes by this exclusion principle mainly. For example, sea barley
grass, Hordeum marinum, excludes both Na+ and Cl− only after it
reaches the threshold of 450 mM NaCl [25]. An exclusive salt tolerance
mechanism (presence of vesiculated hairs on their surface also known
as trichomes) has also been reported in Atriplex halimus, a well known
salt tolerant species, for adaptation to salinity stress by accumulating
excess salts inside the hairs and thereby protecting the leaf parenchyma
and vascular tissues [26].

The differential tolerance to salt toxicity in cereals ranges from
barley (Hordium vulgaere) being the most tolerant followed by Bread
Wheat (Triticum aestivum), durum Wheat (Triticum turgidum
ssp.drum) with rice being the most sensitive (Oryza sativa) [10].
Strikingly this difference in response is much more in dicotyledonous
relatives than in the monocots.

A study of salt tolerance mechanism has been possible with a
comparative analysis of the patterns of response between a wild type
and the natural halophytic relative. In this regards, light has been
thrown into the mechanism of salinity tolerance when Arabidopsis
thaliana was being compared with its wild halophytic relative
Thellungiella halophilla. The contrasting responses highlighted their
selective tolerance to salt: Arabidopsis ceased its growth in presence of
the constant exposure to 100 mM salt whereas [27] endured almost
little or no effect on the growth rate of Thellungiella [28].

Effect of salinity stress in rice crops
Rice is a crop with great economic importance [29,30] and is

cultivated across 114 countries globally [31]. However, the abiotic and
biotic stresses can reduce its yield. This problem will be worse in
attention to increase of global population and food sources deficiency
[32]. Rice is susceptible to salinity, specifically, at the early vegetative
and later reproductive stages [5,33]. Rice genotypes show wide
variations in salinity tolerance due to additive gene effects [34]. Studies
indicated that rice is more resistant at reproductive and grain filling
than at germination and vegetative stages [35], as well as low levels of
salinity can increase the resistance of rice to higher and lethal salinity
levels [36]. At present, salinity is the second type of stress and is the
most predominant hindrance to rice production after drought [37].
The effects of salinity on the growth and yield of rice in field have been
well studied including the study of genotypic variance for salt tolerance
amongst the paddy germplasms [38-40].

Response of rice under salinity
With the aim of generating salt-tolerant rice cultivars, several

morpho-physiological studies have been accomplished till date. The
main focus of such an approach was to maximize the genetic diversity
between parental genotypes. Response of plants to salinity is a random
and natural process. Rice as a crop has been reported as sensitive in the
seedling and reproductive stages [23,41] and has resulted in reduction
of crop yield and productivity [16]. In case of rice, salinity is found to
induce both biochemical and physiological changes causing growth
inhibition and yield loss [19,42-45]. Several physiological parameters

have been studied in the process of evaluation of true salt tolerant lines
to understand the drastic effects of salt accumulation at physiological
level: plant height, plant dry weight, leaf injury and Na+-K+ ratio
[37,46-49].

The effect of salinity on rice is many fold, leading to inhibition of
germination, difficulties in crop area establishment, leaf area
development, decrease in dry matter production, delay in seed set and
also even sterility can occur [40,50]. It has been well documented that
the effect of salinity on seedling growth, seedling establishment, grain
yield components such as spikelet number, tiller number has
successively lead to a reduction in grain yield [51-54]. A wide range of
variation has been reported between and within different rice varieties
in response to salinity [50,55] checked for varying floodwater salinity
tolerance among a number of paddy varieties and reported that
floodwater electrical conductivity (EC) reduced germination rate by
almost 50% and yield by 80% for the most susceptible cultivar in
accordance to the highest salinity level imposed. Further, salinity also
resulted in a decrease of the spikelet number per panicle, 1000 grain
weight and increased sterility, regardless of the season and
development stage.

Morpho-physiological response
Resistance to salinity stress does not rely on a single trait and

thereby understanding of the tolerance mechanisms should employ the
study of the response of rice under stress. A study of the response of
rice to salinity began with the understanding of the underlying
physiological mechanisms associated with plant defense mechanisms
being activated during stress. The effect of salinity on plants is initiated
by the osmotic effect characterized by lowered osmotic potential
followed by later ionic effect causing ion toxicity. Studies conducted to
interpret the response of rice at physiological level indicated
chloroplast and mitochondria to be the most vulnerably affected
organs among others [56]. Hence, chlorophyll content, changes in
chlorophyll fluorescence (Fv/Fm) and membrane permeability are
efficient and potential indicators for understanding the inhibitory
effect of salt on the photosynthetic efficiency [20,57]. Salinity has been
reported to decrease leaf area tremendously and also showed profound
changes in leaf anatomy in rice grown in-vitro [58] or in greenhouse
[59] as verified by [60]. The ultra-structural observations briefed by
[56] also ensured the inhibitory effect of salt on leaf thus hampering
the photosynthetic efficiency: swelling of thylakoids followed by
disruption of chloroplastids. Salinity was observed to exert severe
detrimental effect on the mesophyll tissue even stretching its harmful
effects to the vascular bundles. Evaluation of the response of the crop
plant at later stages was to comprehend the toxic ionic effect of salt on
the plants. The toxic effect of accumulation of sodium salt are mainly
mitigated by the plant via (a) salt exclusion [61,62], (b) selective ion
uptake [63,64] and (c) regulation of K+/Na+ ratio [66-69]. A study of
the root ultra-structure elucidated the penetrating effect of salinity on
rice and the response of the crop plant with an increased rate of
vacuolation and vesiculation decreasing mucilage production in
treated plants compared to control as observed by [69]. A strong
correlation was suggested between sodium content, ratio of K+/ Na+

with seedling growth and grain yield under salt stress [51,52,70].
Evaluation of different cultivars was precised at morpho-physiological
level by estimating parameters like tiller number, leaf area, panicle
length, root length, biomass, dry weight, RGR (Relative Growth Rate),
RWC (Relative Water Content) [16,52,70-72]. Yancey et al. [73]
observed an increased level of leaf RWC in paddy under salinity and
suggested the role of osmo-protectants in preventing cell injury from
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salt stress-induced dehydration. An understanding of the STI (Salt
tolerance index) evaluating indigenous landraces at the morpho-
biochemical level has been reported by [49] implicating the
importance of landraces as probable sources for de-novo genes
inferring tolerance to them as being observed in the study. Thus, the
evaluation of different cultivars at morpho-physiological level enabled
to build up a comprehensive idea about the several physiological
mechanisms operating in the crop plant as a response to salt stress but
failed to provide an insight about the exact pathways and defense
system and the components being directly or indirectly involved in the
process.

Response at the biochemical level
The effect of salinity on crop plants may be categorized as a two-fold

process: an initial osmotic effect followed by ionic stress when salt
accumulation reaches its toxic level [10]. The initial osmotic effect in
plants refers to the lowered water potential to the increased
concentration of salt with an enhanced osmotic potential. One of the
important plant defenses is the osmotic adjustment in plants
accomplished via accumulations of high concentrations of inorganic
ions or low molecular weight organic solutes. These compatible
osmolytes found in higher plants are actually certain low molecular
weight sugars, organic acids, polyols. They also include nitrogen
containing compounds such as amino acids, amides, imino acids,
proteins and quaternary ammonium compounds. Studies indicated
that proline, which occurs widely in higher plants, assimilates in larger
amounts in salt stressed plants [39,74,75]. Proline accumulation in rice
has also been reported by [76] suggesting its active roles in osmotic
adjustment, shielding the enzymes and membranes, also providing
energy and nitrogen for utilization during exposure to salinity [77,78].

Soluble sugars and starch has been observed to serve as an
osmoticum in a number of plants as a response to salinity [79,80]. An
increase in sugar content in shoots has been reported by [81] and also
an increased starch content in roots been showed in the roots of rice
which contributes to the osmotic adjustment to the crop exposed to
salinity by maximizing sufficient storage reserves to prop up the
primary metabolism [82,83]. The toxic effects of salinity are masked by
accumulation of glycine betaine in rice as being reported by [84].
These compounds are reported to have active role in osmotic
adjustment, fortification of the cellular macromolecules, nitrogen
storage. They are important to balance the cellular pH, detoxify the
cells and scavenge the ROS species.

The other way to respond against salinity is alteration or
accumulation of protein level. Exposure to salinity can result in denovo
protein synthesis or an up-regulation of the process to increase the
concentration of certain proteins already present in the plant [85].
Proteins accumulating in plants grown under saline conditions act as a
storage form of nitrogen which is re-utilized in absence of stress
[86-88]. Protein synthesis is also destined to play an active role in
osmotic adjustment. A significant increase in soluble protein content
and positive correlation has been ensured in tolerant rice seedlings
compared to the sensitive ones.

Response at molecular level: targeted approach and cellular
signaling

Attempts to understand salinity tolerance at the gene or molecular
level started with the aim to bred for salinity tolerance and develop salt
tolerant lines. Earlier studies on salinity tolerance mechanisms

revealed the complexity of salinity as an abiotic stress and that there do
exists not only inter-species variation in plant in response to this stress
but also inter-varietal differential response as far as rice being
concerned as a crop [87-90]. Genetic diversity analysis of several
genotypes were thus employed to screen for salinity tolerance by
various molecular markers: RFLP and SSLP mapping by [91], RAPD
and SSR analysis by [92], morpho-molecular evaluation of landraces by
[93]. In order to define the complexity and the nature of the
inheritance of salinity in rice, several studies were conducted which
included conventional techniques such as positional cloning [94,95]
and ‘insertional mutagenesis’ [96,97]. Several genes were identified in
rice induced by high salinity levels as elaborated by [98] in the course
of monitoring the expression profile of rice under stress, which
included genes like salT, catalase and several denovo genes.

The response of plants to combat salinity stress is initiated by their
ability to sense the initial osmotic stress or osmo-sensing. Though the
physiological mechanisms throw light to the modification taking place
in the tissue or cellular level, which is actually measured phenotypically
by quantifying the Na+/K+ ratio, however, control at genetic level and
the regulatory pathway solely formed the backbone behind
understanding of the induced signaling pathway in response to this
stress. With an aim to achieve the same, experiments conducted on
different mutants of Arabidopsis thaliana, came forth with several
regulatory genes and important pathways: Arabidopsis thaliana
histidine kinase, ATHK1: candidate osmosensor [99], CDPKs (Ca+

dependent protein kinases: OsCDPK7 being identified in response to
salinity in rice by Sajio et al.); MAPKs (Map kinases: OsMAPK5 being
identified in rice whose suppression led to hypersensitivity to salinity
by [99,100]; SOS pathway (SOS1, SOS2, SOS3:[101]). These multiple
genes governing the regulation of the response of the plants to salinity
stress ensured the polygenic character of salinity as a trait. Thereby,
work initiated to identify QTL (Quantative trait loci) related to salt
tolerance. The first breakthrough was achieved by [37] where a major
QTL ‘saltol’, has been mapped on chromosome I in an F8 recombinant
inbred lines (RIL) population of Pokkali X IR29cross, using amplified
fragment length polymorphism (AFLP) markers. In recent years, QTL
analysis in rice helped in mapping several QTLs related to several
characters correlated with salinity: QTLs mapped on chromosome 1
and 2 for shoot growth [102]; 5 major QTLs: qRL-7 for root length,
qDWRO-9a and qDWRO-9b for dry weight root, qBI-1a and qBI-1b
for biomass [103]. Separate QTLs being identified each for sodium
uptake, potassium uptake, and sodium:potassium selectivity [104]; 8
QTLs accounting each of three for three traits of the shoots, and each
of five for four traits of the roots at five chromosomal regions [105] and
many more. A total of 35 QTLs were identified by [106] in an F2
mapping population derived from a Sadri/FL478 cross, the major QTL
clusters being mapped in chromosomes 2, 4 and 6 for multiple traits
under salinity stress. Identification of QTL for salinity tolerance
opened a new horizon in the study of salinity and the plant response to
cope up with this stress thereafter. Studies are being conducted to
formulate and identify different alleles whether associated with the
respective QTLs for salinity [107-109].

Defense system of rice against salinity stress
Plant defense mechanisms to combat the toxic effect of salt stress

can be categorized into three processes viz. a) Tolerance to osmotic
stress via osmotic adjustment, b) Na+ exclusion from leaf blades by
selective ion uptake and also regulation of uptake of sodium ions at
molecular level, c) Tissue tolerance, i.e. tolerance of tissue to
accumulated Na+, or in some species, to Cl− via compartmentalization
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of absorbed or accumulated salt [10]. In addition to osmotic stress and
ionic stress plants are subjected to oxidative stress which is caused
mainly due to the inhibitory action of salinity on photosynthesis. In
order to cope up with the upcoming photo-inhibitory effects plants
undergo modification in their metabolic pathways such as heat
debauchery by the xanthophyll pigments and electron transfer to
oxygen acceptors (not water) which can result in the formation of ROS
(reactive oxygen species). The later response is however mitigated by
an initiation of the up regulation of several regulatory enzymes for
such as superoxide dismutase, ascorbate peroxidase, catalase, and the
various peroxidases [105-109]. The enzymatic antioxidant defense
system of plants is inclusive of Superoxide dismutase (SODs),
peroxidases, Catalases, and the enzymes of the ascorbate–glutathione
cycle: Ascorbate peroxidase (APX), Monodehydro-ascorbate reductase
(MDHAR), Dehydro-ascorbate reductase (DHAR), and
Glutathionereductase (GR) while non-enzymatic antioxidants include:
Ascorbate (AsA) and Glutathione (GSH) [110,111]. The oxidative
damage caused is a measure of poise between the formation of ROS
and its subsequent removal by the antioxidative scavenging system
[109,112]. The active role of the anti oxidative system has also been
observed in roots of rice cultivars differing in salt tolerance [113-116].
Sese and Tobita [109] reported a significant decrease of SOD activity in
the salt-susceptible varieties whereas an increase in SOD activity in the
salt-tolerant variety in response to salt treatment [115]. An increase in
peroxidase activity in salt-tolerant cultivars under salt stress has been
recorded by various researchers [117-119]. In rice, differential opinions
are being established as far as oxidative responses are being concerned.
Mishra et al. [120] reported an increase in SOD activity, APX activity
and GPX activity, however reporting an decrease in CAT activity with
increased exposure to salinity levels. An anticipation of the above
results was however elucidated by [121] where an increased CAT
activity and decreased SOD and POX activity was observed in salt
tolerant lines.

The implication: screening against salinity stress
Differential salinity sensitivity at various growth stages is one of the

factors affecting salt tolerance phenotypes. Generally, rice plants is very
sensitive to salinity at young seedling stages and less sensitive at
reproductive stages [70,52]. To assess the response of germplasms to
salinity a proper screening technique is required. In paddy, the
screening can be done at its two salt sensitive stages. Screening at
seedling stage is a rapid method and based on simple criteria.
Screening can be done at field level or in laboratory condition. The
former one is difficult because of presence of soil heterogeneity,
climatic factors and other environmental factors which may itself
interfere with the physiological processes. Environmental influence is a
very complicated factor intertangling salt tolerance. Any
environmental changes such as humidity and temperature will affect
evapo-transpiration and further influence ion transport [5]. This
makes the evaluation of the phenotypes at field conditions very
difficult. So screening under laboratory condition has many advantages
over field screening.

A combined pleotropic effect of different factors alters plant growth
and development at three levels of the plants viz. physiological,
biochemical and molecular level. Primitive works done ensured
screening for salinity tolerance based on agronomic characters. Thus,
early experiments conducted on development of salt tolerant genotypes
solely relied on conventional selection and breeding techniques
[5,74,120-124]. which included screening at the morphological level
based on several physiological and agronomical characters.

Morphological screening can be done using the parameters described
as effective salinity indices like root length, shoot length, plant
biomass, shoot Na+/K+ ratio [38,39,125,126]. The morphological
screening can be started at least after 10 days of exposure to saline
solution for screening properly the tolerant genotypes from susceptible
[37]. However screening for salinity tolerance based on agronomic
characters may not prove to be practicable and fruitful technique
because they are highly influenced by the environment. The
understanding of the salt tolerance mechanisms and furthermore the
assessment of salt tolerance is expected to be much more well defined
by screening the genotypes at the biochemical level as undertaken by
many scientists [75,81,112,119,125,126]. It provided an idea about the
potential indicators of salt tolerance at the whole plant, tissue or
cellular level. The identification of the metabolic sites affected by salt
stress and, conversely, the mechanisms utilized by plants to survive
salinity stress has also been well understood. Molecular screening for
salt tolerance in rice accounts for the recent approaches for
understanding the response of rice under salt stress and thereby mines
useful alleles responsible for salt tolerance [91,107,127-129]. The
identification of saltol QTL in 2010 by Thomson et al. has widened the
horizon for further work and development as far as genetic approach is
being concerned [130-135].

Conclusion
Salinity as an abiotic stress is the second most devastating

phenomenon after draught and interfering with the production and
yield of rice globally. Rice is the major food crop cross across several
countries globally. With the increased population worldwide the
demand for rice is also increasing in accordance. Rice, a glycophyte, by
nature is susceptible to salinity and show wide and vivid response
against the detrimental effects of increased salt accumulation. The
plant defense system in rice includes arrest and alleviation of the
harmful effects of salt toxicity at physiological, biochemical and
molecular levels. A comprehensive study of the manifold works done
to apprehend the effect of salinity and the response of the crop in turn
has been illustrated here. Due to the polygenic nature of the stress, it
has been very meticulous to comment in particular about the exact
mechanism by which mitigation of the same is achieved. However, a
number of metabolic pathways, enzyme complexes, regulatory genes
and QTLs have been enumerated till date to throw some light on the
various particular responses at various stages of this abiotic stress.
With respect to the devastating effect of salinity on this staple food
crop, it is very important assimilate the knowledge of the response of
the crop towards salinity. This will aid in future work of improvement
towards salinity tolerance and breeding for salinity tolerance. A
number of works are being conducted across globally to understand
salinity and the complex mechanisms of rice to mollify the same. In
this regard, it is of prior importance to have an upshot of all the works
going on to understand salinity and its effect on rice. This review is a
minor attempt to summarize the salient contributions and
breakthroughs made in this area in the course of understanding the
response and thus the plant defense to fight salinity as a stress.
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