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Abstract

The first objective of this study was to identify if soluble tumor necrosis factor-receptor 1 (sTNFr1) and -receptor 2
(sTNFr2) are modulated by vitamin D status (insufficient vs. sufficient). The second objective was to reveal if soluble
TNF receptors fluctuate with serum 25-hydroxyvitamin D (25(OH)D) concentrations following a bolus of
supplemental vitamin D. Reportedly healthy male adults were randomly (double-blind) assigned to a placebo (n=15)
or vitamin D (100,000 IU of cholecalciferol; n=14) supplement. Supplements were taken as a bolus immediately after
and on the same day as providing the first blood sample (baseline (Bsl)). Fasting blood samples were also obtained
at 1-, 3-, 7-, and 24-d after the bolus. Serum 25(OH)D, 1,25-dihyroxyvitamin D (1,25(OH)D), tumor necrosis factor
(TNF)-α, sTNFr1, and sTNFr2 were measured in each blood sample. At Bsl, subjects were classified as vitamin D
insufficient (serum 25(OH)D <29 ng/mL; n=12) or sufficient (serum 25(OH)D ≥ 30 ng/mL; n=17). Compared to
insufficiency, vitamin D sufficiency associated with an increase sTNFr1 (p<0.05) and a decrease in sTNFr2 (p<0.05)
without a significant difference in serum TNF-α prior to supplementation. Following supplementation, serum
25(OH)D and 1,25(OH)D transiently increased (both p<0.05) in the absence of robust deviations in TNF-α, sTNFr1,
and sTNFr2. We conclude that vitamin D sufficiency differentially regulates sTNFr1 and sTNFr2, but conversely,
neither soluble receptor fluctuate following a bolus of supplemental vitamin D that mediates an acute perturbation in
serum 25(OH)D and 1,25(OH)D.
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Introduction
Tumor necrosis factor (TNF)-α is a quintessential pro-inflammatory

cytokine produced from immune and non-immune cells in response to
diverse stimuli. Low levels of TNF-α expression is important for tissue
remodeling and host defense responses, but excessive production over
activates inflammatory responses and leads to tissue damage.
Intracellular signals regulating the biological events governed by TNF-
α are mediated through a 55 kDa TNF receptor 1 (TNFr1) and a 75
kDa TNF receptor 2 (TNFr2); both of which, are type I
transmembrane glycoproteins and members of the TNF receptor
family.

TNFr1 and TNFr2 are susceptible to proteolytic cleavage and
alternative mRNA splicing. As a result, their soluble forms (sTNFr1
and sTNFr2) are commonly found in the circulation [1] and offer a
more stable measure of long-term exposure to TNF-α [2,3].
Circulating soluble TNF receptor concentrations increase with disease
[4] and could antagonize TNF-α, and subsequently, ameliorate TNF-α
induced activities [2,5-7]. Conversely, soluble TNF receptors could
preserve TNF-α activity, prolong the systemic half-life, and serve as a
reservoir for TNF-α [2,6,8,9]. These empirical results establish the
physiological importance of soluble TNF receptors to govern the
inflammatory-driven properties induced by TNF-α, which
provocatively, are modulated by vitamin D.

Vitamin D regulates inflammatory cytokines and is routinely
assessed by serum 25-hydroxyvitamin D (25(OH)D) concentrations.
Despite discrepancies [10-12], an increase in circulating 25(OH)D
generally associates with a decrease in circulating TNF-α and TNF-α
production [13-19]. Likewise, in isolated immune cells from patients
with various diseases, 25(OH)D and 1,25-dihydroxyvitamin D
(1,25(OH)D), the most biological active vitamin D metabolite, dose
dependently inhibited TNF-α production [20-28]. Vitamin D also
neutralizes pro-inflammatory events derived from TNF-α [29-31],
collectively demonstrating its ability to regulate TNF-α levels and its
biological properties. Few studies, however, report the influence of
25(OH)D on soluble TNF receptors. From sparse data, results suggest
that vitamin D (i.e., 1,25(OH)D) suppressed the biological properties
of TNF-α by facilitating the ectodomain shedding of TNFr1, and as a
by-product, increased sTNFr1 in the culture medium [32]. In elderly,
increases in sTNFr1 and sTNFr2 associated with an increase in
25(OH)D and a decrease in 1,25(OH)D [33]. Unfortunately, results are
inconsistent as data from elderly men and women also demonstrate a
decrease in sTNFr1 and sTNFr2 with an increase in serum 25(OH)D
above a vitamin D-deficient demarcation (≥ 21.3 ng/mL) [34]. The
inconsistency in the sparse literature is compounded by the void in our
knowledge regarding the ability of supplemental vitamin D to
modulate soluble TNF receptors concomitantly with serum 25(OH)D.

Based on the aforementioned inconsistencies and gap in our
knowledge, the purpose of this investigation was two-fold. The first
objective was to identify if sTNFr1 and sTNFr2 are modulated by
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vitamin D status prior to vitamin D supplementation. As the second
objective, we sought to identify if soluble TNF receptors fluctuate
following a large bolus of supplemental vitamin D that induces an
abrupt increase in serum 25(OH)D and 1,25(OH)D. We hypothesized
that vitamin D sufficiency and an increase in serum 25(OH)D
following a bolus of supplemental vitamin D associate with an increase
sTNFr1 and sTNFr2 concentrations. Addressing this hypothesis is
important because it will advance our knowledge regarding the
capacity of vitamin D to regulate soluble cytokine receptors that are
instrumental to pro-inflammatory biology and immune system
signaling.

Materials and Methods

Subjects
Reportedly healthy and modestly active (i.e., 30 min of continuous

physical activity at least 3 times per week) males between 18 and 50
years of age were recruited to participate in this study (n=29, age, 33
(8) y; height, 178 (7) cm; body mass, 84.6 (11.8) kg; body mass index
(BMI), 26.6 (3.3) kg/m2). Potential subjects were excluded from
participation if they had a known history of metabolic bone disease,
any skeletal muscle pathologies, cardiac or peripheral cardiovascular
system abnormalities, clotting disorders, coronary artery disease,
peripheral vascular disease, stroke, cancer, high cholesterol or
triglycerides, high blood pressure, hypercalcemia or parathyroid
dysfunction, iron deficiency within the past year, or impaired liver or
kidney function. Potential subjects were also excluded from study
participation if they had a known family history or diagnosis of
chronic granulomatous disease, taking digoxin or antiarrhymic
medications, warfarin, anti-coagulants, cholesterol lowering
medication, diagnosed with diabetes mellitus, taking a daily dietary
supplement, treated for vitamin D deficiency during the past year,
using corticosteroid medication, planning on increasing or decreasing
the amount of time spent in the sun or tanning bed, traveling south of
37ºN in latitude during study participation, or morbidly obese (BMI
>40 kg/m2). The Central Region Institutional Review Board at
Intermountain Healthcare (Salt Lake City, UT USA) approved this
study. Subjects were informed of and provided written and verbal
consent to the study protocol and procedures.

Study design and protocol
This study consisted of a randomized, double-blind, placebo

controlled design. Subjects were randomly assigned to a placebo (PL;
n=15) or vitamin D (VD; cholecalciferol at 100,000 IU; n=14)
supplement group. Supplements were taken as a bolus immediately
after and on the same day as providing the first blood sample (i.e.,
Baseline; Bsl). Tablets were taken under the supervision of the
investigators. USANA Health Sciences Inc. (Salt Lake City, UT USA)
donated and provided a quality control analysis of the supplements.
Placebo and vitamin D tablets were identical in appearance and
randomization was permutated into blocks of four.

During participation, subjects were asked to keep their dietary
habits consistent with their regular routine during the previous year
and to refrain from the use of dietary supplements. Subjects were also
instructed to refrain from physical activity and using aspirin,
ibuprofen, naproxen sodium, acetaminophen, or other anti-
inflammatory agents 72 hours prior to a blood draw. Fasting blood
samples were obtained prior to (Bsl) and 1-, 3-, 7-, and 24-d after
ingesting the bolus.

Blood sample handling
Fasting blood samples were obtained from the antecubital vein.

Plasma was separated by centrifugation (VWR International, Clinical
50 Centrifuge, Radnor, PA USA) at 1100 g for 15 min within 20 min of
sample collection. Following separation, plasma samples were sent to
ARUP Laboratories (Salt Lake City, UT USA) for the determination of
parathyroid hormone (PTH), intact with calcium (see below). After
coagulation, serum was separated by centrifugation (VWR
International, Clinical 50 Centrifuge) at 1100 g for 10 min, and then
aliquoted into several small micro-centrifuge tubes. Aliquoted serum
samples were stored at -80°C (Revco Freezer, GC Laboratory
Equipment, Asheville, NC USA) until later analyses.

Analytical procedures
Serum vitamin D metabolites: Serum 25(OH)D concentrations were

measured in duplicate (coefficient of variation = 5.29%), as previously
described [35]. In brief, analytes were separated on an Agilent high
performance-liquid chromatography system (series 6460, Model
G6460A, Santa Clara, CA USA) and detected on Agilent tandem mass
spectrometer (Series 6410, Model G6410B, Santa Clara, CA USA)
using atmospheric pressure chemical ionization detection (350°C gas
temperature, 400°C vaporizer). The 25(OH)D3, deuterated 25(OH)D3
internal standard, and 25(OH)D2 precursor ions were 383.3, 386.3,
and 395.4, respectively. The 25(OH)D3, deuterated 25(OH)D3, and
25(OH)D2 product ions were 365.3, 368.3, and 208.9, respectively.
Serum 25(OH)D2 and 25(OH)D3 concentrations were corrected for
recovery of the 25(OH)D3 internal standard. Serum 25(OH)D2 (limit
of detection=2.0 ng/mL) was not detected in any of the samples.
Therefore, serum 25(OH)D total concentrations are referred to as
serum 25(OH)D concentrations hereafter. National Institute of
Standards and Technology standards were measured in parallel to
study samples to confirm the accuracy of the analytical procedure.
Subjects were classified as vitamin D deficient, insufficient, or sufficient
if they had a serum 25(OH)D concentration ≤ 20, between 21-29, or ≥
30 ng/mL, respectively [36]. Serum 1,25(OH)D concentrations were
determined using a quantitative radioimmunoassay (ARUP
Laboratories) and VDBP concentrations (EMD Millipore, Billerica,
MA USA) were determined using Luminex technology (MAGPix;
Austin, TX USA).

Serum TNF-α, sTNFr1, and sTNFr2 concentrations
The multiplex technology of Luminex was used to analyze serum

TNF-α (EMD Millipore) and soluble TNF-receptor (EMD Millipore)
concentrations with high-sensitivity in The Physiology Research
Laboratory at The Orthopedic Specialty Hospital (Murray, UT USA).

Plasma parathyroid hormone, intact with calcium
Plasma PTH, intact with calcium concentrations were measured

using a quantitative electrochemiluminescent immunoassay at ARUP
Laboratories.

Statistical analyses
Data were checked for normality prior to statistical analyses with a

Shapiro-Wilk Test. Statistical significance of subject characteristics and
data between vitamin D status groups (Insufficient and Sufficient) and
supplements (Placebo and Vitamin D) at Bsl were assessed with either
a Mann-Whitney U test or a t-test depending on the Shapiro-Wilk Test
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p-value. Statistical significance of data (concentration and
concentration changes) between supplement groups (PL and VD) were
assessed with separate Friedman two-way analysis of variance tests and
followed by multiple pairwise comparisons when appropriate. A
Spearman Rank Correlation was performed to examine the association
between variables. Significance was set at p<0.05 and all statistical
analyses were performed with SYSTAT (version 13.1, Chicago, IL
USA). Data presented as median (interquartile range) unless otherwise
noted.

Results

Vitamin D status group comparisons prior to
supplementation
The number of subjects classified as vitamin D deficient,

insufficient, or sufficient were two (6.9%), 15 (51.7%), and 12 (41.4%),
respectively. Due to the small sample size in the vitamin D deficient
group, we subsequently combined the deficient and insufficient groups
(n=17, Insufficient) for the vitamin D status comparisons prior to
supplementation. Circulating concentrations of 1,25(OH)D, VDBP,
PTH, and calcium were not significantly different between the vitamin
D Insufficient (serum 25(OH)D <29 ng/mL) and Sufficient groups
(serum 25(OH)D ≥ 30 ng/mL; Table 1).

Serum TNF-α concentrations were not significantly different
between the vitamin D Insufficient and Sufficient groups (Table 1).
Conversely, serum sTNFr1 was significantly (p<0.05) increased and
sTNFr2 was significantly (p<0.05) decreased in the vitamin D
Sufficient compared to the Insufficient group (Figures 1A and 1B).

Subject characteristics and serum 25(OH)D concentrations
Subject characteristics, vitamin D status classification (deficient,

insufficient, and sufficient; Table 2), plasma PTH, calcium (Table 3),
and serum 25(OH)D concentrations (Figure 2A) were not significantly
different between the PL and VD groups prior to supplementation.
Following supplementation, serum 25(OH)D concentrations were
significantly (p<0.05) increased in the VD group. Serum 25(OH)D
concentrations displayed a transient peaked at 3- (~31%) and 7-d
(~36%), and despite a gradual decrease thereafter, remained elevated at
24-d (~21%) compared to Bsl in the VD group. Importantly, all
subjects with initial vitamin D insufficiency achieved vitamin D
sufficiency at 3- or 7-d in the vitamin D group, and no subjects in the
VD group achieved a serum 25(OH)D concentration deemed toxic
(i.e., serum 25(OH)D) ≥ 100 ng/mL) [36] despite a substantial number
of subjects possessing a sufficient concentration prior to
supplementation. Serum 25(OH)D concentrations progressively
decreased in the PL group at 7- (~3%) and 24-d (~6%).

Insufficient Sufficient

n 17 12

Age (y) 31 (5) 38 (17)

Height (cm) 179 (11) 177 (8)

Body mass (kg) 88.2 (17.9) 84.2 (15.0)

BMI (kg/m2) 25.8 (4.1) 26.0 (2.1)

Serum 25(OH)D (ng/mL) 23.5 (5.9) 33.3 (8.5)*

Serum 1,25(OH)D (pg/mL) 55.0 (18.0) 61.0 (13.5)

Serum VDBP (pg/mL) 28.6 (13.3) 34.5 (19.1)

Plasma PTH (pg/mL) 39.0 (13.3) 39.5 (18.5)

Plasma calcium (mg/DL) 9.20 (0.30) 9.45 (0.40)

Serum TNF-α (pg/mL) 7.03 (4.84) 7.52 (4.50)

Data presented as median (interquartile range)

Insufficient, serum 25(OH)D <29 ng/mL

Sufficient, serum 25(OH)D ≥ 30 ng/mL

*p<0.05 vs. Insufficient

Table 1: Vitamin D Insufficient and Sufficient subject characteristics at Bsl.

As expected, serum 25(OH)D concentration changes from Bsl (Δ)
were significantly (p<0.05) increased in the VD group (Figure 2B).
Specifically, serum 25(OH)D Δ were significantly (both p<0.05)
increased at 3- and 7-d compared to 1- and 24-d. Also, serum

25(OH)D Δ were significantly (p<0.05) increased in the VD compared
to the PL group. In the PL group, Δ were significantly decreased at 7-
and 24-d (both p<0.05).
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n 15 14

Age (y) 33 (8) 29 (19)

Height (cm) 179 (8) 175 (10)

Body mass (kg) 85.1 (11.5) 85.0 (23.3)

BMI (kg/m2) 25.6 (2.5) 26.3 (7.7)

Vitamin D status

Deficient (n)

Insufficient (n)

Sufficient (n)

1

8

6

1

7

6

Data presented as median (interquartile range)

Table 2: Subject characteristics and vitamin D status prior to supplementation.

Figure 1: Soluble TNF receptor concentrations in vitamin D
Insufficient and Sufficient groups. (A) Serum sTNFr1 and (B)
sTNFr2 were significantly increased and decreased, respectively, in
the vitamin D Sufficient compared to the Insufficient group. Data
presented as median (interquartile range). ap<0.05 vs. Insuff. Insuff:
Insufficient; Suff: Sufficient.

Figure 2: Serum 25(OH)D concentrations and concentration
changes. (A) Serum 25(OH)D concentrations were significantly
(p<0.05) increased following supplemental vitamin D and in
comparison to the corresponding PL group. (B) Serum 25(OH)D
concentration changes from Bsl (Δ) were significantly (p<0.05)
increased in the vitamin D group. Data presented as median
(interquartile range). ap<0.05 vs. Bsl; bp<0.05 vs. 1-d; cp<0.05 vs. 3-
d; dp<0.05 vs. 7-d; ep<0.05 vs. corresponding PL.

Bsl 1-d 3-d 7-d 24-d

Plasma PTH (pg/mL)

PL 39.0 (11.8) 32.0 (10.0) 34.0 (12.0) 35.0 (12.5) 34.0 (9.9)

VD 38.0 (19.0) 34.0 (17.0) 26.5 (15.0) 32.5 (17.0) 30.0 (15.0)

Plasma calcium (mg/dL)

PL 9.20 (0.30) 9.40 (0.45) 9.30 (0.20) 9.20 (0.28) 9.30 (0.48)

VD 9.45 (0.50) 9.35 (0.60) 9.45 (0.30) 9.40 (0.50) 9.60 (0.60)

Data presented as median (interquartile range)

Table 3: Plasma PTH and calcium prior to and following supplementation.

Serum 1,25(OH)D and VDBP concentrations
Following supplementation, serum 1,25(OH)D concentrations were

significantly (p<0.05) increased at 3- and 7-d compared to Bsl in the

VD group (Figure 3A). At 7-d, serum 1,25(OH)D concentrations were
significantly (p<0.05) increased in the VD group compared to 24-d
and to the corresponding 7-d concentration in the PL group. Serum
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1,25(OH)D Δ were significantly (p<0.05) increased at 7-d in the VD
group and at 3-, 7-, and 24-d in the VD compared to the PL group
(Figure 3B). Serum 1,25(OH)D concentrations were not significantly
different in the PL group.

The VDBP carries 85-90% of the total circulating 25(OH)D [37],
and importantly, maintains and stabilizes serum 25(OH)D
concentrations during variable vitamin D availability [38]. Although
25(OH)D and 1,25(OH)D are two of the major vitamin D metabolites
with significant biological activity, VDBP also regulates the biologic
effects of vitamin D as evident by its role in altering neutrophil
recruitment [39]. Therefore, we examined the VDBP response to
supplemental vitamin D. Despite significant alterations in serum
25(OH)D and 1,25(OH)D, serum VDBP concentrations were not
significantly modulated by a large bolus of vitamin D (Figures 3C and
3D). However, a non-significant increase in the VDBP was apparent in
the VD group at 3- and 7-d. This finding could assist with generating
new hypotheses and determining appropriate sample sizes for future
studies examining the role of supplemental vitamin D to modulate the
VDBP.

Vitamin D metabolite correlations in the VD group
As demonstrated by our lab [40] and others [41], Bsl serum

25(OH)D inversely correlated (p<0.05) with the change in serum

25(OH)D following supplementation (Table 4). Extending those
findings, we found that serum 25(OH)D and VDBP at Bsl positively
and negatively correlated, respectively, with the Δ in VDBP at 7-d. The
inverse association between Bsl and concentration changes in VDBP
following supplemental vitamin D extends previous work [42] by
demonstrating that the VDBP response to supplemental vitamin D is
blunted with an increase in Bsl concentrations.

Serum cytokine and soluble cytokine receptor concentrations
Despite numerous investigations illuminating the impact of vitamin

D on serum TNF-α and the data from this study suggesting that
vitamin D status alters soluble TNF receptors, we were unable to detect
a difference in serum TNF-α, sTNFr1, or sTNFr2 concentrations
between the PL and VD groups (Figures 4A-4F). In addition, vitamin
D status prior to supplementation did not significantly modulate
serum sTNFr1 and sTNFr2 concentrations following the bolus of
supplemental vitamin D (data not shown).

Bsl

25(OH)D 1,25(OH)D VDBP

25(OH)D 1-d Δ -0.19 0.32 -0.02

25(OH)D 3-d Δ -0.26 0.06 0.28

25(OH)D 7-d Δ -0.26 0.43 -0.11

25(OH)D 24-d Δ -0.61* 0.21 -0.13

1,25(OH)D 1-d Δ 0.04 -0.06 0.11

1,25(OH)D 3-d Δ 0.15 -0.24 0.18

1,25(OH)D 7-d Δ 0.07 -0.16 0.30

1,25(OH)D 24-d Δ 0.06 -0.10 0.20

VDBP 1-d Δ 0.41 0.05 -0.12

VDBP 3-d Δ 0.38 -0.24 -0.49

VDBP 7-d Δ 0.56* -0.22 -0.68*

VDBP 24-d Δ 0.11 -0.18 -0.45

n=14; *p<0.05

Table 4: Vitamin D metabolite Spearman Rank correlation coefficients (ρ) in the VD group only.
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Figure 3: Serum 1,25(OH)D and VDBP concentrations and
concentration changes. Serum 1,25(OH)D concentrations (A) and
concentration changes from Bsl (Δ; B) were significantly (both
p<0.05) increased in the VD group. Serum VDBP concentrations
(C) and Δ (D) were not significantly different between groups. Data
presented as median (interquartile range). ap<0.05 vs. Bsl; bp<0.05
vs. 1-d; cp<0.05 vs. 3-d; dp<0.05 vs. 7-d; ep<0.05 vs. corresponding
PL.

Discussion
In this investigation, we provide the first evidence that vitamin D

sufficiency increases sTNFr1 and decreases sTNFr2 without altering
serum TNF-α in reportedly healthy, male adults. In contrast, however,
soluble TNF receptor deviations are absent following a large bolus of
supplemental vitamin D that induces an immediate but transient
increase in serum 25(OH)D and 1,25(OH)D. These data suggest that
soluble TNF receptors are prone to modulation by vitamin D status but
less apt to fluctuations following a large bolus of vitamin D that
mediates an abrupt and transient increase in serum 25(OH)D and
1,25(OH)D.

A novel finding of the present investigation was the sTNFr1 increase
in reportedly healthy male adults with vitamin D sufficiency. This
finding conflicts with previous reports demonstrating an increase in
sTNFr1 with various diseases or low vitamin D [4,34,43]. Low vitamin
D associates with an increase in inflammation [14], and inflammatory
stimuli triggers the proteolysis of the TNF-α receptors by
metalloproteinases that subsequently increase the soluble form in the
circulation [2,44-46]. Also, in vitro and in vivo results indicate that
inflammatory challenge compromises 25(OH)D levels, which
consequentially, increases 1,25(OH)D [47-52]. In vascular smooth
muscle cells, 1,25(OH)D exposure mediates the ectodomain shedding
of TNFr1 and increases the amount of sTNFr1 found in cell culture
medium [32]. Thus, inflammation or an increase in 1,25(OH)D
(inflammatory- or non-inflammatory-driven) could contribute to the
increase in sTNFr1. However, in the present investigation, neither
serum 1,25(OH)D nor TNF-α were significantly different despite
contrasting sTNFr1 concentrations between vitamin D status groups.

Figure 4: Serum TNF-α and soluble TNF receptor concentrations
and concentration changes. Serum TNF-α, sTNFr1, and sTNFr2
concentrations and concentration changes from Bsl (Δ) were not
significantly different between the PL and VD groups (A-F). Data
presented as median (interquartile range).

Another unique finding of this study and consistent with elderly
data [34], is the decrease in sTNFr2 with vitamin D sufficiency.
Proteolysis of the membrane bound receptor decreases the number of
receptors on the cell surface and the sensitivity to TNF-α signal
transduction [1,53]. Therefore, it is plausible that a decrease in the
soluble form could relate to an increase in the membrane-bound
TNFr2 and the capacity to augment TNF-α mediated events through
the cell-associated receptor. Although it is unknown if the decrease in
sTNFr2 associates with an increase in the cell-associated TNFr2 or
alters TNF-α mediated events, it is noteworthy that a decrease in
sTNFr2 improves survival following hospital admission in children
with severe meningococcaemia [54] and reduces the risk of hip
fracture in women [55]. Nevertheless, additional studies performed at
the cellular and molecular levels are needed to reveal the
mechanism(s) underlying the increase in sTNFr1 and decrease in
sTNFr2 with vitamin D sufficiency.

Conflicting with the unique findings regarding the divergence in
sTNF receptor concentrations with vitamin D status is the inability of
supplemental vitamin D to mediate sTNFr1 and sTNFr2 fluctuations
concurrently with serum 25(OH)D. One plausible explanation could
reside with initial serum 25(OH)D concentrations. The average serum
25(OH)D concentration (28.2 (9.8) ng/mL) prior to supplementation
was borderline sufficient. Further supporting the presence of gross
vitamin D sufficiency, plasma calcium and parathyroid hormone
concentrations were not significantly different between the vitamin D
Insufficient and Sufficient groups prior to supplementation. The lack of
subjects with low vitamin D could have important ramifications on the
ability of supplemental vitamin D to alter soluble cytokine receptors as
indirect evidence from our lab suggests that initially low serum
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25(OH)D potentiates the ability of supplemental vitamin D to modify
circulating cytokine (i.e., interferon-γ and interleukin-10)
concentrations [56]. Additionally, this investigation consists of a 24-d
protocol in reportedly healthy, male adults following a bolus of
supplemental vitamin D. Based on the cytokine receptor differences
between vitamin D status groups before supplementation, it is
foreseeable that a daily or intermittent (i.e., weekly or monthly) long-
term intervention of supplemental vitamin D intended to induce and
maintain a sufficient serum 25(OH)D concentration in subjects with
initial vitamin D deficiency (i.e., <20 ng/mL and corresponding
alterations in parathyroid hormone and calcium levels) could modify
soluble TNF receptor concentrations.

Consistent with previous data [40,41,57], there was a significant
increase in serum 25(OH)D (from approximately 28.0 to 38.4 (peak at
7-d) ng/mL) following a large bolus of cholecalciferol that inversely
correlated with Bsl concentrations. Extending on previous findings,
this study provides new results suggesting subjects with high serum
25(OH)D at Bsl possess the greatest change in VDBP concentrations
following a 100,000 IU bolus of cholecalciferol. However, despite the
trend for increasing concentrations (Figure 2C), there was not a
significant increase in serum VDBP following supplemental vitamin D,
thereby leaving doubt in the causal relationship of 25(OH)D to
mediate an increase in the VDBP. In agreement with this inference,
results elsewhere suggest supplemental vitamin D increases serum
25(OH)D without perturbing VDBP concentrations in adults and
elderly [42,58]. Those original findings are not universal, however, as
data from hip fracture patients suggest an increase in serum VDBP
following supplemental vitamin D [59]. Considering the robust
inflammatory cascade and limb disuse conditions following the acute
trauma of a hip fracture episode, it is plausible that the capacity of
25(OH)D to modulate serum VDBP is condition specific. This
assumption, however, requires additional research for later resolve.

In addition to those mentioned above, there are other study
limitations worthy of discussion. This study was delimited to
reportedly healthy, male adults with unintentionally good vitamin D
and corresponding circulating calcium levels. The ability of vitamin D
to regulate soluble TNF receptors is calcium dependent [32], and
therefore, alterations in circulating calcium with a fluctuating serum
25(OH)D concentration could be a necessity for vitamin D to
modulate sTNFr1 and sTNFr2. Also, a single serum 25(OH)D
concentration measure was used to identify vitamin D status before
supplementation. Serum 25(OH)D concentration measures performed
on separate occasions would be ideal to confirm a stable vitamin D
status prior to supplementation. Next, it is unclear if the diverging
soluble TNF receptor concentrations with vitamin D status moderate
biological events mediated by acute or chronic disturbances in TNF-α.
These limitations should be taken into consideration when designing
future studies pertaining to vitamin D and soluble TNF receptors.

In summary, this study provides the first evidence that vitamin D
sufficiency associates with an increase in sTNFr1 and a decrease in
sTNFr2 without altering serum TNF-α in reportedly healthy, male
adults. However, serum 25(OH)D and 1,25(OH)D concentrations
increase while TNF-α and its soluble receptors were not significantly
different following a large bolus of supplemental vitamin D. Based on
these findings, we conclude that vitamin D sufficiency differentially
regulates sTNFr1 and sTNFr2, while neither soluble receptor fluctuate
with acute perturbations in serum 25(OH)D following supplemental
vitamin D. Additional studies are clearly justified and desired to
identify if soluble TNF receptor deviations moderated by vitamin D

status or supplementation regulate the pleiotropic properties of TNF-α
necessary for optimum host defenses in diverse physiological and
pathophysiological conditions.
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