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Short Communication
Periodontitis is bacterial infection affecting periodontal tissues, 

which results in the alveolar bone destruction, and is associated with 
bacteria-induced inflammation and an increase of macrophages 
infiltrated into the gingiva [1-3]. Porphyromonas gingivalis (Pg) is the 
most common causative bacterium causing periodontitis, in addition to 
other gram-negative anaerobic species [4,5]. Lipopolysaccharides (LPS) 
from Pg bind to Toll-like receptor (TLR) 2, inducing the activation of 
nuclear factor kappa B (NFκB) and producing pro-inflammatory 
cytokines such as interleukin (IL)-1β or tumor necrosis factor 
(TNF)-α [6,7]. Macrophages are of the classical activation (M1) and 
alternative activation (M2) phenotypes; the M1 phenotype activated 
by stimulation with the Th1 cytokine interferon (IFN) γ or LPS plays 
a crucial role in the onset and progression of inflammation [8,9]. On 
the contrary, the M2 phenotype is usually induced by Th2 cytokines 
IL-4 or IL-13, and plays roles in immune responses, production of anti-
inflammatory cytokines, revascularization, and wound closure [10-
13]. Therefore, macrophages are implicated in both tissue destruction 
and tissue remodeling and play crucial roles in the interface between 
inflammation and regeneration of tissue. Sprouty (Spry) proteins have 
been extensively studied as negative regulators that interfere with 
fibroblast growth factor (FGF) signaling by suppressing the mitogen-
activated protein kinase (MAPK) pathway [14,15]. Four mammalian 
isoforms of Spry (Spry1, Spry2, Spry3, and Spry4) have been identified; 
Spry2 specifically attenuates the phosphorylation of the receptor 
tyrosine kinase (RTK) pathway in response to FGF, epidermal growth 
factor (EGF), platelet-derived growth factor (PDGF), nerve growth 
factor (NGF), or vascular endothelial growth factor (VEGF) [16-19]. 
In our earlier studies, we demonstrated that the sequestration of Spry2 
enhances the extracellular signal-regulated kinase (ERK) activation, 
osteoblast proliferation, and osteoblastogenesis. On the other hand, 

Spry2 suppression showed decreased the activation of ERK, thereby 
inducing gingival epithelial cell proliferation [20]. Furthermore, we 
found showed that Spry2 depletion promoted cell migration and 
proliferation, whereas it interfered with differentiation to osteoblasts in 
periodontal ligament stem cell line [21]. Thus, Spry2 knockdown may 
effectively induce migration of the periodontal ligament along the root 
surface of a tooth, and the increase of alveolar bone, while impeding 
the down-growth of gingival epithelia in bone defects. These two 
previous studies indicated that Spry2 depletion may create favorable 
conditions in periodontal regeneration. The inflammation caused by 
Pg LPS must be resolved, and M2 alternative activated macrophages 
play an important role in periodontal wound healing during the start 
of periodontal remodeling. Accordingly, it is fundamental to examine 
the physiological mechanisms through which the downregulation of 
Spry2 by the stimulation with Pg LPS influences macrophage functions.

In the recent paper in our laboratory entitled “Inhibition of Sprouty2 
polarizes macrophages toward an M2 phenotype by stimulation with 
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Abstract
Introduction: Periodontitis, a bacterial infection affecting periodontal tissues, results in the alveolar bone 

destruction. In particular, periodontitis is associated with Porphyromonas gingivalis (Pg)-induced inflammation and 
an increase of macrophages infiltrated into the gingiva. Sprouty (Spry) proteins function as negative regulators, which 
interfere with the activation of fibroblast growth factor (FGF) pathway by suppressing the mitogen-activated protein 
kinase (MAPK) signaling. We have previously showed that the suppression of Spry2 effectively induces the periodontal 
ligament migration along the root surface of the tooth and an increase of the alveolar bone, whereas impeding gingival 
epithelial down-growth toward bone defects.

Results: In the recent paper in our laboratory, we showed that Spry2 knockdown by Pg lipopolysaccharide (LPS) 
and interferon (IFN) γ stimulation converts macrophages from the M1 to M2 phenotype, and may effectively resolve 
inflammation by releasing anti-inflammatory cytokines in macrophages.

Conclusion: These studies show that the topical application of Spry2 inhibitors to bone loss may generate 
an appropriate environment for periodontal remodeling by inducing M2 macrophages, resolving inflammation in 
periodontitis, activating the periodontal ligament migration along the root surface of a tooth, promoting growth of the 
alveolar bone, and interfering with gingival epithelial down-growth toward bone defects. These findings thus provide a 
molecular basis for novel therapeutic targets in periodontal remodeling.
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interferon γ and Porphyromonas gingivalis lipopolysaccharide”, we 
found that inhibition of Spry2 in combination with Pg LPS and IFNγ 
converts macrophages to the M2 phenotype, and may effectively 
resolve inflammation by producing anti-inflammatory cytokines such 
as IL-10 and various types of growth factors in macrophages [22]. 
First, Spry2 knockdown promoted the activation of growth factor-
induced AKT/phosphoinositide 3-kinase (PI3K) and Rho family 
GTPases, specifically Rac1, in macrophages, thereby increasing the 

efferocytosis of apoptotic cells after Pg LPS and IFNγ stimulation. 
In addition, we demonstrated that the recognition and engulfment 
of apoptotic cells, called “efferocytosis”, result in the release of anti-
inflammatory cytokines, including IL-10 by the suppression of Spry2 
[22]. Second, AKT/PI3K signaling can activate TLR pathway induced 
by LPS in a feedback loop which suppresses the phosphorylation of 
TLR activators. Our experiments suggested that AKT/PI3K suppressed 
by Spry2 promoted the activation of NFκB p65 and IκB degradation. 

Figure 1: Function of the Spry2 inhibitor in the growth-factor signaling pathway in various types of cells. The suppression of Spry2 inhibits endogenous Spry2, 
thereby activating growth factor-induced Rac1 pathway and inhibiting the TLR-induced NFκB pathway in macrophages. In addition, it induces phenotypic 
changes toward the M2 type in macrophages, enhancing bFGF and EGF. These factors are involved in the anti-inflammatory functions of osteoblasts, gingival 
epithelial cells, and periodontal ligament cells, leading to periodontal tissue remodeling.

Figure 2: A proposed image of the clinical administration of Spry2 inhibitors. The topical administration of Spry2 inhibitors can be utilized to resolve inflammation 
effectively in periodontal tissue. M2 macrophages (gray) polarized by Spry2 inhibition may generate an appropriate environment for periodontal remodeling 
by activating the periodontal ligament migration along the root surface of a tooth (green), promoting growth of the alveolar bone (blue), and interfering with the 
down-growth of gingival epithelia toward bone loss (purple).
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These interactions between TLR and RTK pathway such as growth 
factor signaling decreased interference with polarization toward M1 
macrophages [22].

Consequently, our results demonstrate that Spry2 inhibitors 
suppress endogenous Spry2, thereby inducing the activation of 
growth factor-induced Rac1 and AKT/PI3K, and inhibiting the TLR-
induced NFκB pathway in macrophages. Moreover, Spry2 suppression 
induces change of the macrophage phenotype toward the M2 type, 
and enhances the production of bFGF and EGF, which are involved 
in the cell functions between osteoblasts, gingival epithelial cells, and 
periodontal ligament cells (Figure 1). Taken together, these studies 
show that the topical application of Spry2 inhibitors to bone loss may 
generate an appropriate environment for periodontal remodeling by 
inducing M2 macrophages, resolving inflammation in periodontitis, 
activating the periodontal ligament migration along the root surface 
of a tooth, promoting growth of the alveolar bone, and interfering 
with gingival epithelial down-growth toward bone defects (Figure 2). 
These findings thus provide a molecular basis for novel therapeutic 
approaches in periodontal tissue regeneration.
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