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Background
Genome wide association studies have been very useful for the 

identification of genetic variants as disease risk markers; however, the 
impact of these genetic variants in disease aetiology remains largely 
unclear. In this study, we tried to unravel molecular mechanisms 
underlying “shared genetic variants” and developed a strategy to identify 
candidate mechanisms for shared aetiology of diseases that display 
similar patterns of genetic variation organized in shared genomic 
hotspots. We demonstrate how this approach leads to new insights that 
help to uncover biological relationships between quantitative traits or 
related neurodegenerative diseases. 

Many traits or diseases have been shown to share genetic architecture 
[1,2]. This phenomenon, that a genetic variant affects multiple 
phenotypes, is often called ‘pleiotropy’ [3-5]. Such pleiotropic variants 
are particularly interesting, as the functional impact of a SNP on one 
or several genes may provide clues about the underlying molecular 
mechanism. For example, a significant overlap of shared genetic 
variants and pathways has been detected in immune-mediated diseases, 
suggesting extensive pleiotropic effects [6-8]. These shared genetics 
variants linked to pathways are ideally suited to identify candidate 
mechanisms underlying a “shared aetiology” of different diseases. 

So far, various studies have been implemented across the genome, 
mostly on those groups of diseases, which are already well recognized or 
hypothesized to be interconnected [6,8-10] or by investigating influence 
of individual genetic variant on a wide range of diverse diseases [11-13]. 

Biologically, a genetic variant can influence different traits 
fundamentally in two different ways; firstly, it can influence two distinct 
phenotypes through two independent physiological mechanisms, while 

secondly, its effect on the second trait can be mediated through its effect 
on the first one.

Apparent genetic similarities in a pair of distinct diseases may be 
indicative for potential overlaps in the underlying disease mechanisms. 
Thus investigating common factors and network modules shared within 
a pair of distinct, but related diseases, may point at shared mechanisms. 
Rather than studying individual diseases separately, investigation and 
analysis of common dysregulated pathways or dysfunctional proteins of 
a pair of related diseases can be expected to reveal deeper comprehensive 
knowledge about pathophysiological processes. 

Correspondingly, computing of shared molecular level mechanisms 
of related disorders can not only assist understanding of the etiology 
of a disease; but also such associations between shared pathways and 
correlation with biological processes can accelerate drug discovery 
efforts by suggesting promising treatment candidates for already 
approved drugs (known as drug repositioning) [14]. 

In the work presented here, we performed a systematic and 
comprehensive analysis of shared genomic loci likely to represent 
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genomic hotspots with genes functionally involved in the aetiology of 
neurodegenerative diseases. We go way beyond classical meta-analysis 
of GWAS data by performing a ‘functional context enrichment’ that 
is tailored to embed candidate genes in these genomic hotspots in a 
mechanistic context. We demonstrate that this functional enrichment 
can lead to the identification of new candidate mechanisms for shared 
aetiology of Alzheimer´s Disease and Parkinsonism. 

Methods 
GWAS disease-associated variants are identified throughout the 

entire genome. In order to reveal shared genomic hotspots, that could 
have been comprised candidate genes for shared molecular mechanisms 
between two or multiple neurodegenerative and related diseases, 
genetic variants were collected from GWAS catalog [15] with the 
threshold of p-values<1.0 × 10-5 for five diseases; including Alzheimer’s 
disease, Parkinson disease, Schizophrenia, Multiple sclerosis and Type 
2 diabetes mellitus. These collected genetic variants were belonged to 
multiple disease association studies and each association study was 
conducted with different sample sizes. Thus according to basic principle 
of meta-analysis, we combined the evidence for association from 
individual studies, with the implementation of appropriate weights, 
by using a whole genome association analysis toolset Metal [16] and 
normalized them for their different sample sizes.

Afterwards, Linkage Disequilibrium (LD) analysis was conducted 
separately for each disease by using Haploreg DB V.4.0 [17]. Next, 
shared genetic variants were queried by pair-wise analysis for ten pairs 
of disease of these five diseases. 

Subsequently, we made use of the ENSEMBL variant database 
[18-20] as a reference database to map the SNPs with their relevant 
chromosome, location, gene, allele and potential functional features 
(intergenic SNPs were mapped to the nearest gene on the chromosome). 
Additionally, these shared SNPs were interpreted with the characteristics 
of predicted functional consequences by using RegulomeDB V.1.1 [21] 

to get annotation from current ENCODE data (updated with recent 
ENCODE releases: [22,23]), Chromatin States data from the Roadmap 
Epigenome Consortium and updated data for DNase footprinting, 
PWMs, and DNA Methylation, and finally ranked the variant lists 
according to predicted functional consequences attributes.

Most of the GWAS identified genetic variants are located on the 
non-coding regions of the genome. In order to investigate, whether 
there are any overlapping genome stretches between the ‘loci of shared 
GWAS and LD genetic variants’ and ‘loci of the well-established 
disease-associated genes in the literature’; in addition to the data-
driven approaches described above, a comprehensive knowledge 
driven approach was also conducted, by searching systematically from 
literature with the help of a literature mining environment-SCAIView 
[24]. 

To extract shared genes for a pair of disease from literature, we 
were queried via SCAIView for those genes, which were studied for 
both diseases comprised in a pair (i.e., for AD and T2DM disease pair: 
{(([MeSH Disease:”Alzheimer Disease”]) and [MeSH Disease:”Diabetes 
Mellitus Type 2”]) and [Human Genes/Proteins]}). This literature 
search was conducted in a pair-wise analysis of genes for all of the 
ten pairs of diseases. The extracted list of “shared genes for a pair of 
disease from literature” (represented in the workflow as ‘List: A’) from 
SCAIView, was then used to pinpoint overlaps by comparing it with 
the list of “genes mapped with shared GWAS-LD genetic variants for a 
pair of disease” (represented in the workflow as ‘List: B’); and resulting 
file had ‘shared genes for a pair of disease’ common in GWAS-LD and 
Literature (Figure 1). 

Afterwards, we mapped list of these shared genes to biological 
pathways by using MsigDB [25], to identify common pathways for each 
pair of disease. To demonstrate the potential of the approach, we did 
an exploratory study on one putative shared mechanism relevant for 
AD and PD. The genomics locus investigated maps to chromosome 
17; to a region that displays highest scores for functional consequences 

Figure 1:  Flowchart for data analysis steps: 
Flowchart for data analysis steps starting from GWAS Data collection to integration, mapping, annotation, filtering, Modeling and finalizing by Hypothesis generation.
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in RegulomeDB and one of high ranked shared pathway between AD 
and PD from MsigDB result table, that is ‘KEGG_LONG_TERM_
DEPRESSION’ (Supplementary File). The high-resolution analysis 
of that shared genomic locus for its potential role in the aetiology of 
the disease pair AD and PD includes - besides the identification of 
the candidate locus and the candidate genes within - the collection of 
evidences from gene expression studies, patents, knock-out studies and 
other literature, ultimately resulting in a comprehensive knowledge-
driven approach towards the enrichment with supportive evidence.

Results
In an initial step, we selected five different brain diseases including 

Alzheimer’s disease (AD), Parkinson disease (PD), Schizophrenia, 
Multiple sclerosis (MS) and Type 2 diabetes mellitus (T2DM). 

Spatial analysis, after mapping of GWAS disease-associated intronic 
SNPs to the genes, they belong to; and intergenic SNPs to the most 
likely, nearby genes; reveals that most of the GWAS SNPs are located 
around specific genome loci (“genomic hotspots”). Our assumption is, 
that the genes existing in the vicinity of these genome loci may play a 
role in the dysregulation of disease-associated pathways.

Moreover, we computed pair-wise analysis for shared genetic 
variants to see the relevancy between each pair of diseases. However, 
enumerating of pair-wise shared GWAS SNPs before LD SNPs 
enrichment revealed that only a very limited number of individual 
SNPs are shared in a pair of diseases, while after LD analysis, most of the 
disease pairs showed a substantial count of shared variants; which also 
signify the genetically linkage between SNPs located on these specific 
genomic loci around GWAS SNPs. Thus it can be explained that these 
pairs of disease may share disease-associated genomic loci rather than 
individual genetic variants (Supplementary File).

Pair-wise analysis also revealed that AD and PD have the largest 
number of shared disease-associated loci. There is no doubt, that this is 
reflecting the bias that comes with the higher number of GWAS studies 
and available data around these two diseases. But it also may indicate an 
overlap of the genetics relevant for pathophysiology mechanisms shared 
between AD and PD. Other disease pairs, for instance the AD-T2DM pair, 
did also show a promising number of shared genetic markers and genomic 
loci. Successively, pairs of AD-Schizophrenia and AD-MS also presented a 
reasonable number of shared SNPs and genomic loci (Table 1).

The analysis of specific overlapping genome stretches between ‘loci 
identified for shared GWAS-LD genetic variants’ and ‘loci of already 
established disease-associated genes in the literature’ revealed that there 
was a quite significant overlap between GWAS loci and literature based 
disease-associated gene loci (Supplementary File), which provides 
suggestive evidence for an association between genetic variants and 
disease pathology. 

Analysis of putative shared pathways was done by mapping genes 
in genomic hotspots to pathways using MsigDB. Shared pathways-as a 
functional layer on top of shared genetics - are indicative for putative 
pathology mechanisms shared between pairs of diseases. The analysis 
workflow thus identifies disease pairs that do display a high number 
of shared genomic hotspots, a significant number of putative shared 
pathways and – as a consequence - may have significantly shared 
molecular level mechanisms, that-when perturbed - may contribute to 
disease etiology.

To explore the pathophysiology of putative shared mechanisms in 
detail, we selected the pair of AD and PD for a mechanistic case study. 

Amongst their shared genomic loci, we selected the well-known Tau 
locus, located on chromosome 17, to explore further detailed molecular 
mechanisms, as it showed top ranked “functional consequences” scores, 
based on ENCODE data, the Roadmap Epigenome Consortium data, 
DNase footprinting analysis, and DNA Methylation data. Apparently, 
selecting the tau locus seems to add nothing new and novel, as 
the tau locus is already well known and has been studied in detail. 
However, this locus has never been studied in a comprehensive way 
by “embedding” all the affected genes in that locus into a functional 
context. In our analysis, we expand the mechanistic context associated 
with the genes in the tau locus, by collecting and assembling all genetic, 
molecular and statistical evidences from the literature, from patents, 
from gene expression studies and from knock-out experiments in one 
comprehensive mechanistic model. In the following, we are presenting 
this locus in a very novel and unique perspective of stress induced 
shared pathology of AD and PD. 

This genomic hotspot around tau is highlighted in many association 
studies for multiple statistically significant SNPs (references). 
The hotspot covers approximately 1 Mb of a chromosomal region 
characterized by linkage disequilibrium region that contains a large 
number of genetic variants.

 Three genes are prominent in this locus: MAPT (Microtubule-
Associated Protein Tau), the CRHR1 receptor-1 (Corticotropin 
Releasing Hormone Receptor 1) and the CRHR1-IT1 gene (CRHR1 
Intronic Transcript 1). These genes are linked to several disease-
associated genetic markers mapping to both, coding and non-
coding regions. Moreover, disease-associated intergenic and intronic 
SNPs of this locus have several eQTL links with neighboring genes 
(Supplementary File). 

In the course of our investigation of this shared genomic locus, 
we identified that, other than AD and PD, it also has well-established 
associations with Stress and Depression phenotypes. We searched for 
potential genetic, molecular and statistical evidences from the scientific 
literature and collected additional evidences from patents, gene 
expression studies and knock-out experiments, that all support the 
notion of a shared molecular mechanism linking Stress, AD and PD.

To enrich the genetics-driven identification of candidate genes 
with functional context and to identify potential mechanisms that 
bear explanatory potential for the presumed shared etiology linked to 
this particular locus on chromosome 17, we performed a systematic 
literature analysis using our literature mining environment SCAIView 
[26]. Contextual information relevant to the previously identified, 
disease-associated tau locus and being specific for the context of AD 

Shared SNPs and Genes Count for 10 pairs of 5 Diseases
Disease Pair Shared SNP Count Shared Gene Count
AD–PD 35958 1793
AD–T2DM 2187 103
AD–Schizophrenia 867 46
AD–MS 771 62
PD–Schizophrenia 701 24
PD–T2DM 463 21
MS–Schizophrenia 421 28
T2DM–MS 250 17
PD–MS 246 19
T2DM–Schizophrenia 223 18

Table 1: List of disease pairs with GWAS associated shared genetic variants and 
genes count.
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and PD was systematically identified and harvested. The extracted 
information comprises cause-and-effect relationships representing 
protein-protein interactions, protein inhibitory and activating patterns, 
protein-complex formation, insights from disease animal model 
studies, patterns from knockout and gene expression studies, other 
genetic associations; from gene mapping (fine-mapping) and GWAS 
meta-analysis studies, and from drug effects; all with high specificity for 
either AD or PD or both. The vast amount of information extracted was 
subsequently encoded using the OpenBEL (Open Biological Expression 
Language) syntax to construct a cause-and-effect computable model 
[27]. Models were developed separately for human and mouse. The 
resulting, comprehensive BEL models represent the state of published 
knowledge in the context of the genes under investigation in the context 
of AD and PD; the models are then visualized by Cytoscape_v2.8.3 [28] 
and queried for disease associated molecular mechanisms to unravel 
mechanistic context that link molecular level perturbation with the 
disease etiology. 

The mouse model reveals that repeated stress induces the expression 
of the wild-type CRH (Corticotropin Releasing Hormone) gene, while 
inactivation of the CRHR1 gene, which is the receptor of CRH, not only 
inhibits the complex of CRH+CRHR1 but also causes a reduction of 
MAPT phosphorylation and a reduction of Amyloid beta (Aβ) peptide 
concentration [29]. CRHR2, which is another receptor of CRH, inhibits 
MAPT phosphorylation; moreover, it has been shown to down-regulate 
the expression of CDK5, ERK, GRK and JNK genes [30]. As further 
supportive evidence for the functional antagonism between CRHR1 
and CRHR2, the CRHR1 inhibitor ‘Antalarmin’ blocks CRHR1 and 
its complex with CRH; the inhibitor also causes a reduction of MAPT 
phosphorylation [30] (Figure 2).

The contextual BEL model specific for human pathophysiology 

demonstrates that a genetic variant rs1800547, located on the intron 
region of the MAPT gene, is positioned on the Haplotype-1 region of 
chromosome 17, which is associated with PD [31,32]. Its ‘A’ allele is 
associated with ‘Dementia in PD patients’ and its ‘G’ allele with ‘familial 
FTD’ [33]. This genetic variant is linked with the expression of host gene 
MAPT and also expression of a neighbouring gene CRHR1; thus, its ‘A’ 
allele is associated with an up-regulation of MAPT and a concomitant 
down-regulation of the CRHR1 gene, while the ‘G’ allele is associated 
with an up-regulation of the CRHR1 gene [33]. In addition, the ‘A’ 
allele containing SNP rs1800547 is linked to a neuro-imaging readout, 
the reduction of gray matter volume [33]. Likewise, the ‘A’ allele of 
another SNP named rs393152, which is located near the CRHR1 gene, 
is associated with the up-regulation of the MAPT gene [34]. Moreover, 
the rs393152-A allele has been associated with AD and PD, and seems 
to be linked to a reduction of gray matter volume as well as atrophy of 
the hippocampus and entorhinal cortex [34] (Figure 3).

BEL models are excellent tools to represent complex physiology; the 
representation in BEL bears great explanatory potential on how complex 
physiology works across scales. Our contextual BEL models representing 
complex physiology of genes in the Tau locus provide a mechanistic 
explanation, how excessive and repeated stress may modulate 
pathophysiology. Repeated stress induces the expression of the CRH gene 
in the hippocampal area [35], while under AD conditions; reduced CRH 
immune-reactivity is observed [36]. CRH interacts with its receptor, the 
CRHR1 protein; the CRHR1 gene is highly expressed in hippocampus 
and the complex between the hormone and its receptor (CRH+CRHR1) 
can be detected in that brain region [37]. In addition, the CRHR1 protein 
also interacts with γ-secretase, which is associated with Aβ accumulation, 
one of the hallmarks of AD pathophysiology [38]. 

The hormone receptor protein complex (CRH+CRHR1) is further 

Figure 2: Experimental evidences for CRH gene and its receptors CRHR1 and CRHR2 and CRHR1 antagonist ‘Antalarmin’: 
Experimental evidences for CRH gene and its receptors CRHR1 and CRHR2 and CRHR1 antagonist ‘Antalarmin’, collected from mouse model knock-out experiments 
to identify their role in the stress induced mice Hippocampus: Repeated stress induces the expression of the wild-type CRH gene, while inactivation of the CRHR1 
gene, which is the receptor of CRH, not only inhibits the complex of CRH+CRHR1 but also causes a reduction of MAPT phosphorylation and a reduction of Amyloid 
beta (Aβ) peptide concentration. CRHR2, which is another receptor of CRH, inhibits MAPT phosphorylation; moreover, it has been shown to down-regulate the 
expression of CDK5, ERK, GRK and JNK genes. As further supportive evidence for the functional antagonism between CRHR1 and CRHR2, the CRHR1 inhibitor 
‘Antalarmin’ blocks CRHR1 and its complex with CRH; the inhibitor also causes a reduction of MAPT phosphorylation.
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Figure 3: Experimental evidences for AD/PD pleiotropic variants, to identify the functional consequences for these variants: 
A genetic variant rs1800547, located on the intron region of the MAPT gene, is positioned on the Haplotype-1 region of chromosome 17, which is associated with PD. Its ‘A’ 
allele is associated with ‘Dementia in PD patients’ and its ‘G’ allele with ‘familial FTD’. This genetic variant is linked with the expression of host gene MAPT and also expression 
of a neighbouring gene CRHR1; thus, its ‘A’ allele is associated with an up-regulation of the MAPT and a down-regulation of the CRHR1 gene, while the ‘G’ allele is associated 
with an up-regulation of the CRHR1 gene. Moreover, the ‘A’ allele containing SNP rs1800547 is also linked to a neuro-imaging readout, the reduction of gray matter volume. 
Likewise, the ‘A’ allele of another SNP named rs393152, which is located near the CRHR1 gene, is associated with the up-regulation of the MAPT gene. Moreover, the 
rs393152-A allele is associated with AD and PD, and also linked with a reduction of gray matter volume as well as atrophy of the hippocampus and entorhinal cortex.

Figure 4: Stress induced comorbidity association of AD and PD by genetic variants of Tau locus genes: 
Stress up regulate CRH gene expression, which interacts with its receptor, the CRHR1 protein; the CRHR1 gene is highly expressed in hippocampus and the complex 
between the hormone and its receptor (CRH+CRHR1) can be detected in that brain region. In addition, the CRHR1 protein also interacts with γ-secretase, which is 
associated with Aβ accumulation, one of the hallmarks of AD pathophysiology. The hormone receptor protein complex (CRH+CRHR1) is further linked to the up-regulation 
of GSK3β and the phosphorylation of essential elements of the ERK1/2/MAPK pathway. Up-regulation of GSK3β is associated with MAPT hyper-phosphorylation; in 
addition, phosphorylated MAPT and ERK1/2/MAPK pathway up-regulate Neurofilament phosphorylation, which has been associated with AD. The complex physiology 
is even increased through the interaction of the ‘CRH+CRHR1’ protein complex with the BDNF protein; this interaction has already been associated with AD pathology. 
The complex also enhances neuronal activity by interacting with adenylate cyclase, cAMP, act(PAK), Ca2 signaling pathways. The resulting enhanced neuronal activity 
has been shown to further accumulate interstitial fluid amyloid beta (ISF Aβ), while this accumulation of ISF Aβ is also linked with up-regulation of CRH gene expression, 
effectively establishing a feedback loop that can enhance negative dysregulation events. MAPT hyper-phosphorylation also increases its dissociation from microtubules, 
a process that has been linked to lewy-bodies and Parkinsonism, in the PD context. Finally, the CRHR1 antagonist ‘Antalarmin’, which is used in response of chronic 
stress, has been shown to reduce Aβ accumulation in brain, adding further meaningful, supportive evidence in context.
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linked to the up-regulation of GSK3β and the phosphorylation 
of essential elements of the ERK1/2/MAPK pathway [30,39]. Up-
regulation of GSK3β is associated with MAPT hyper-phosphorylation 
[30,40]; in addition, phosphorylated MAPT and ERK1/2/MAPK 
pathway up-regulate Neurofilament phosphorylation, which has been 
associated with AD [30,39]. The complex physiology is even increased 
through the interaction of the ‘CRH+CRHR1’ protein complex with 
the BDNF protein; this interaction has already been associated with 
AD pathology [41]. The complex also enhances neuronal activity by 
interacting with adenylate cyclase, cAMP, act(PAK), Ca2 signaling 
pathways [41]. The resulting enhanced neuronal activity has been shown 
to further accumulate interstitial fluid amyloid beta (ISF Aβ), while 
this accumulation of ISF Aβ is also linked with up-regulation of CRH 
gene expression [42], effectively establishing a feedback loop that can 
enhance negative dysregulation events. MAPT hyper-phosphorylation 
also increases its dissociation from microtubules, a process that has 
been linked to lewy-bodies and Parkinsonism, in the PD context [43].

Finally, the CRHR1 antagonist ‘Antalarmin’, which is used in 
response of chronic stress, has been shown to reduce Aβ accumulation 
in brain [44] (Figure 4), adding further meaningful, supportive 
evidence in context.

Additionally, exhaustive analysis of relevant patent literature 
revealed that an antagonist against the CRH receptor is effective as a 
prophylactic or therapeutic agent for diseases, like, anxiety, depression, 
AD and PD [45]. Patents also describe multiple lines of evidence that 
suggest the significant role of CRHR1 on neuropsychiatric disorders, 
and MAPT gene as a well-studied candidate gene for neuropsychiatric 
disorders [46]. Moreover, it is also patented that although the two 
receptors CRHR1 and CRHR2 share 70% sequence identity, they differ 
substantially in ligand binding affinity, and the CRH gene itself has a 
much higher affinity for CRHR1 rather than CRHR2 [47]. Another 
patent describes that the accumulation of hyperphosphorylated tau 
protein in the central nervous system, may be reduced through the 
administration of CRHR1 selective antagonists and/or CRHR2 selective 
agonists. Patent [EP2522351 A1] indeed describes methods for the 
prevention of the onset of Alzheimer’s disease by the administration of 
CRHR1 selective antagonists [48] (Supplementary File).

Discussion
In the work presented here, we established an integrative approach 

that starts with a data-driven approach, identifies signals in GWAS data, 
and gains explanatory potential and allows for new insights into putative 
complex mechanisms through knowledge-driven context enrichment. 
Our approach goes way beyond classical “pathway enrichment” 
approaches, as it takes multimodal information into account and integrates 
heterogeneous information and knowledge in biologically meaningful, 
computable graph models. Data, a priori knowledge and inferred 
insights are combined in a seamless fashion. Meaningful cause-and-effect 
relationships are established and the signals originally identified are made 
interpretable in a rational modelling and mining approach. 

Our workflow is tailored towards the identification of novel shared 
mechanisms. It starts with comparative GWAS analysis tailored to 
identify shared genetic variants; puts the enriched SNPs in contigs 
(based on linkage disequilibrium); identifies those genes belonging to 
the “shared” LD loci and establishes compelling evidence for shared 
molecular mechanisms and biological pathways associated with 
those genes, for a given pair of disease. The workflow was applied to 
a comprehensive set of related diseases and allowed us to investigate 

shared molecular level mechanisms between a pair of diseases, based 
on both, data driven and knowledge driven strategies.

We would like to emphasize that genomic loci (genomic hotspots) 
should be considered to investigate the effects of GWAS variants rather 
than individual genetic variants, particularly to investigate shared 
pathology. Whereas the biological impact of single SNPs is often hard 
to predict, the association of several SNPs in a disease-associated LD 
block provides evidence for a much stronger association that may affect 
an entire locus with several genes. As a consequence, a set of SNPs in 
a genomic hotspot may contribute to dysregulation events involving 
several genes.

Modelling the functional context of these genes in computable 
cause-and-effect models can be very helpful to identify possible 
molecular level perturbation mechanisms that contribute to disease 
pathology. As such, computable mechanistic models are essential to 
integrate diverse types of data as well as relationships between the 
nodes; they can help to discover unknown links to illustrate the possible 
mechanism of dysregulation. 

At this point we would like to stress that we are not talking about 
pathways when we talk about mechanisms. Although pathways are 
abstractions of biological functional context that is shared by many cell 
types and often conserved across species boundaries, the pathway concept 
as it was established over the last 30 years is not taking into account genetic 
variation information and is not well-suited to take into account the 
specifics of cell-cell-interactions. “Chains of causation” as we find them 
in the BEL model graphs may as well exist in pathways, but in pathways 
they are confined to one type (one “mode” or “level”) of information. 
Integrative models based on causal relationships, however, span over 
multiple levels and scales and establish links e.g. from SNPs to imaging 
features in one single, computable graph model. We would encourage 
the community to clearly distinguish between pathways (representing 
canonical information) and mechanisms (representing causes and effects 
associated with a disease context). Mechanistic modeling allows us to be 
highly specific with respect to the available knowledge in a given context, 
without restricting us to make use of canonical knowledge if we wish to 
include that type of common information. 

The mechanistic hypothesis generated from our ‘tau locus BEL 
model’ establishes a rational, how stress could cause deficits in memory 
[49-54]. We may actually have established a functional context that 
puts a “sensor” for environmental and life style into a pathophysiology 
mechanism that could play a significant role in the etiology of Alzheimer’s 
disease. Our model provides also mechanistic clue, how hippocampal 
atrophy may be linked to the pathophysiology of stress [49,51-54] The 
stress-related HPA axis activation (linked to the CRH-CRHR1 complex) 
may thus represent a pathophysiological initiation of memory loss [52]. 
Likewise, it is reported that the decline in CRH Immuno-Reactivity 
(CRH-IR) in AD is due to the reciprocal accumulation of CRH receptors 
in affected cortical areas [37]. The alteration in pre- and postsynaptic 
indicators for CRH is significantly correlated with decline in ChAT 
(choline acetyltransferase) activity [37].

The H1 haplotype of MAPT extends towards the 5’ region and 
includes the contiguous gene CRHR1. Linkage Disequilibrium 
(LD) of this region is substantially associated with PD patients [55]. 
Strikingly, the oldest and most extensively case-control studies for 
PD demonstrated the greatest evidence for MAPT and H1 haplotype 
association. By genotyping H1 haplotype SNPs within the CRHR1-
MAPT interval, we can hypothesize that the CRHR1 gene may be 
responsible for at least part of the disease association of this locus due to 
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the genetic variability and could become a good biomarker candidate, 
since it is significantly involved in both, immune and nervous systems 
physiology [55]. Missense and splicing genetic variants in MAPT 
were first uncovered in ‘frontotemporal dementia with parkinsonism’ 
associated with chromosome 17 (FTDP-17) [31].

Thus, forgoing studies have already specified associative links 
between stress, CRH-CRHR1, and tau pathology mediated by CRH-
CRHR1 dependent activation of tau kinases induced by stress [30,41,56]. 
On the other side, the H1 haplotype is associated with the accumulation 
of hyperphosphorylated Tau in neuronal cell bodies, which has always 
been associated with neurodegenerative diseases [57,58].

Though AD and PD are likely to have different mechanisms 
underlying their etiology and may affect different brain regions, and 
display different clinical features, still they have a significant overlap 
in the progression of neurodegenerative processes. A recent study 
has been investigating AD and PD GWAS SNPs to identify AD-
PD pleiotropic genetic variants/loci. They found, that the ‘A’ allele of 
rs393152, within the CRHR1 and CRHR1-IT1 region (MAPT locus) on 
chromosome 17, with a MAF (minor allele frequency) value of 23.1%, 
significantly increased AD and PD risk, additionally, that allele is linked 
to the up-regulation of MAPT expression [33]. With APOE-stratified 
GWAS, another study revealed that genetic variants in the chromosome 
17q21.31 region are associated with AD [59].

Besides all the genetic evidences that support our mechanistic 
model, there is also evidence from pharmacology that adds to the 
plausibility of the pathophysiological context we have established. 
Rissman et al. described that the selective CRHR1 blocker “antalarmin” 
blocks stress-induced escalations in tau phosphorylation. This points 
at a direct function for CRF-dependent signaling in the stress response 
[30]. Fully in line with this observation is the finding, that CRHR1 
antagonist antalarmin is able to suppress amyloid beta accumulation 
associated with AD pathology, in mice [60].

It is also notable that CRHR1 has a vital role in inflammation 
[61,62] and the CRHR1 antagonists that are used to treat depression 
[63,64], also control peripheral inflammation [65-67]. Similarly, 
those antidepressants, which are known to modulate inflammatory 
responses, also confer protection against cytokine-induced depressive-
like behavioral and biological modifications [68-72]. 

In a clinical study with MCI (Mild Cognitive Impairment), AD 
and control groups, Arsenault-Lapierre et al. [73] couldn’t find group 
differences in cortisol levels. This contradicts several previous studies 
that found different cortisol levels between normal and AD [74-78] 
and between normal and MCI groups [78,79]. Contrarily, it supports 
the literature that found no correlation between cortisol level and 
perceived stress in different populations [80-82]. Whereas, in this study 
more MCIs were diabetic, and diabetic patients have been found to 
secrete higher cortisol levels [83-85], likewise more AD patients were 
on sedatives or antidepressants. These medications may affect levels of 
cortisol and perceived stress measured in the patients [73]. However, 
these findings support our hypotheses that with the mechanism 
introduced here and the link between HPA axis, genetics and major 
determinants of AD and PD pathophysiology, we see a source for the 
highly stochastic nature of sporadic NDDs.

Repetitively, in a recent publication, Park HJ stated that stress 
response meditated by CRH-CRHR1 mechanism could also contribute 
to AD pathogenesis [38]. But he also described that under some 
circumstances, CRHR1 antagonism does not achieve required results 
against acute stress-induced Aβ production, rather he suggested that 

either direct targeting of CRH or G protein-biased CRHR1 agonist that 
could suppress β-arrestin recruitment to CRHR1 might be required to 
effectively target associated pathway for therapeutic benefit in AD [38].

Conclusion
Our work has established an integrative approach that gains 

explanatory potential and allows for new insights into putative complex 
mechanisms through both, data-driven and knowledge-driven context 
enrichment. Our workflow is tailored towards the identification of 
novel shared mechanisms and established compelling evidence for a 
new, shared molecular pathophysiology mechanism associated with 
AD and PD. 

Starting with signal detection in a GWAS meta-analysis, our 
approach integrates heterogeneous information and knowledge in 
biologically meaningful and computable graph models. The computable 
mechanistic model we generated integrates diverse types of data as well 
as relationships between the nodes, resulting in an efficient ‘functional 
context enrichment’. We demonstrate that this functional enrichment 
of genetic variants can lead to the identification of new candidate 
mechanisms explaining a putative shared aetiology of a given pair of 
diseases, in our case Alzheimer´s Disease and Parkinsonism.

Though AD and PD affect different brain regions and display 
different clinical features, still they have a significant overlap in the 
progression of neurodegenerative processes and our analysis provides 
compelling evidence for a shared mechanism linking both clinical 
syndromes.

We emphasize that genomic loci should be considered to investigate 
the effects of GWAS variants rather than individual genetic variants, 
particularly to investigate shared pathology, since the biological impact 
of individual SNPs is often hard to predict.
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