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Abstract

Nicotine exerts its reinforcing actions via activating the nicotinic acetylcholine receptors (nAChRs). Among an
increasing number of nAChR subtypes, the α4β2 and α7 nAChRs are the two major ones, accounting for about 95%
of the whole nAChR population in brain. Research findings from our own laboratory, together with other reports in
the field, suggest critical and differential involvement of the α4β2 and α7 nAChRs in the process of nicotine
dependence and tobacco addiction. Specifically, rat models of nicotine consumption and cue-induced relapse were
used to examine the effects of selective antagonism of these two nAChR subtypes on the primary reinforcement of
nicotine and the conditioned reinforcing actions of nicotine-associated environmental stimuli (cues). Results
demonstrated that blockade of the α4β2 but not α7 subtype effectively reduced nicotine intake, whereas α7 but not
α4β2 nAChR blockade reversed cue-triggered nicotine relapse behavior. These findings lend support for the
continued effort to develop cholinergic agents aiming at the α4β2 nAChRs for reducing or stopping smoking.
However, it is suggested that manipulation of α7 nAChR activity would be a promising target for preventing smoking
relapse triggered by exposure to environmental cues.
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Introduction
Tobacco-related diseases are a major problem in many perspectives

from human health to social economics [1]. For example, in the United
States tobacco smoking becomes a leading preventable cause of
premature death. Every year, tobacco smoking results in the loss of
450,000 lives and economic cost of $289 to $333 billion [2]. Currently,
approximately 42.1 million American adults are smokers, representing
about 18.1% of the population [3]. Although almost all smokers want
to quit smoking and make attempts, up to 97% of them relapse to
tobacco smoking [3-6]. The high relapse rates of tobacco smoking
present a formidable challenge for the success of smoking cessation
efforts including currently available pharmacotherapies (e.g., nicotine
replacements, bupropion, and varenicline).

Nicotinic acetylcholine receptors (nAChRs) mediate the
pharmacological (including its reinforcing) actions of nicotine. These
receptors are ion channels composed of five subunits. There are twelve
nAChR subunits: nine α-subunits (α2-α10) and three β-subunits (β2-
β4). These subunits assemble the nAChRs into either heteromeric (α-
and β-subunits) or homomeric (α-subunit only) combinations [7-10].
Increasing number of subtypes of the nAChRs has been and will be
identified, among which the heteromeric α4β2- and homomeric α7-
containing receptors are the most abundant and widespread subtypes,
comprising about 95% of total nAChRs in the brain [7,8,11-14]. These
two subtypes show differences in their localization, density, and
functional characteristics (e.g., kinetics of activation, desensitization,
and recovery from desensitization, and Ca2+ permeability) [9,15-18].
Many studies including our own research have demonstrated a critical
role of the α4β2 nAChRs in mediating the primary reinforcing actions

of nicotine [19-23], while, in contrast, a lack of a clear role of the α7
nAChRs in the nicotine reinforcement [24, 25-31].

Increasing clinical observations and laboratory animal studies have
demonstrated the conditioned incentive properties of drug-associated
environmental stimuli (cues) [32-37]. In smokers, the environmental
cues related to smoking behavior including both distally situational
contexts and proximal sensory cues such as the visual and olfactory
stimuli associated with each puff elicit subjective states that can trigger
smoking and nicotine-seeking behavior [32,33,38-49]. In animal
research, the ability of nicotine-related cues to reinstate nicotine-
seeking behavior has been well documented [31,37,50-59]. A great
interest has focused on the investigation of neurobiological
mechanisms underlying the conditioned motivational effects of
nicotine cues [36 for a recent review].

Our animal research work over the past decade or so has
demonstrated the role of nicotinic neurotransmission in the mediation
of the conditioned motivational effects of nicotine-associated cues. The
method used for testing the behavior motivational effects of nicotine
cues and other relapse risk factors (e.g., stress or drug priming) was the
response-reinstatement tests, which has been validated to be an animal
model of relapse [60-62]. Using this testing procedure, we for the first
time found that a nonselective nAChR antagonist mecamylamine
effectively reversed the cue-induced reinstatement of nicotine-seeking
behavior [63]. And furthermore, our recent work has demonstrated
that the α7 but not α4β2 nAChRs mediate the cue-induced
reinstatement of nicotine-seeking behavior [31].

Experimental Procedures for Testing Nicotine
Consumption and Relapse

Rats were used for testing nicotine intake and relapse behavior.
After implantation of an indwelling intravenous catheter, the animals
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were trained to self-administer nicotine in daily one-hour sessions in
the standard operant conditioning chambers. In the sessions, once the
rats reached a fixed-ratio 5 schedule requirement of responses on the
active lever, an infusion of nicotine was delivered. To establish a
nicotine-conditioned cue, each nicotine infusion was paired with
presentation of a sensory stimulus. For testing cue-triggered relapse
behavior, extinction sessions were performed after completion of the
self-administration and conditioning training. In these sessions,
responses on the lever produced no programed outcomes. After
responding was extinguished, the response-reinstatement test sessions
were conducted where lever-pressing responses led to the cue
presentations while without the delivery of nicotine [54-55,63]. The
antagonists of the nAChRs were administered to the rats prior to the
self-administration and the reinstatement test sessions [31,63]. The
antagonists included a nonselective antagonist mecamylamine, a α4β2-
selective antagonist dihydro-β-erythroidine (DhβE), and a α7-selective
antagonist methyllycaconitine (MLA).

Distinct Roles of the α4β2 and α7 nAChRs in the
Reinforcement by Nicotine versus Conditioned
Motivation by Nicotine Cues

Ample evidence obtained from both human and animal studies has
demonstrated a clear role of the α4β2 nAChRs in mediating the
primary reinforcement by nicotine [19-23]. In contrast, however, it is
not quite clear whether the α7 nAChRs play a role in nicotine primary
reinforcement [24,25-31]. For example, in one study MLA did not
interfere with nicotine self-administration [24], whereas, in another
report MLA produced a suppressant effect [64]. Conditioned place
preference studies also excluded a possible role for α7 nAChRs in the
mediation of nicotine reward. For example, mice that were either
treated with MLA or deficient in α7 nAChRs developed nicotine-
induced conditioned place preference at a level similar to their control
counterparts [28,65]. Interestingly, Brunzell and McIntosh [29] found
that the α7 nAChR-selective antagonist α-conotoxin ArlB [VIIL,
VI6D], when microinjected into rat nucleus accumbens shell and
anterior cingulate cortex, significantly increased nicotine self-
administration behavior under a progressive-ratio schedule of
reinforcement. Of significance is our recent research showing that
MLA did not change the self-administration of nicotine [31],
indicating that activation of the α7 nAChRs is not required for the
reinforcement by nicotine. In summary, activation of α7 nAChRs is
proposed to play little, if any at all, role in the mediation of nicotine
primary reinforcement.

In the response-reinstatement tests, response-contingent
presentation of the nicotine-conditioned cues triggered the recovery of
lever-press responding after extinction. Such an effect was specific for
nicotine-seeking behavior in that responses on the inactive lever
remained unchanged, indicating the unlikelihood of a result of
nonspecific behavioral arousal. The conditioned incentive properties of
nicotine cues have been very well documented in literature including
our own series of studies over the last decade or so [31,37,50-59].
These results obtained from animal research lend support for clinical
observations that smoking-related cues enhance desire to smoke
[32,33,38-49]. Together, these findings suggest that re-exposure to
environmental stimuli previously associated with nicotine intake can
play an important role in relapse to tobacco smoking in abstinent
smokers.

The nonselective nAChR antagonist mecamylamine effectively
reversed the recovery of nicotine-seeking behavior triggered by

nicotine cue presentation. This finding demonstrates the requirement
of neurotransmission via the nAChRs for the expression of cue-
triggered relapse to smoking behavior. It is consistent with clinical
observations. For example, mecamylamine was reported to decrease
the likeness for intravenously infused nicotine in smokers [66], craving
for smoking [67], and satisfaction following smoking [68-70].

In contrast to the role of the α4β2 nAChRs in mediating nicotine
reinforcement, our studies showed that blockade of these receptors by
DhβE pre-treatment did not interfere with the cue-induced
reinstatement of nicotine-seeking responses [31]. The doses used
should be sufficient to antagonize the receptors because such a dose
range has often been used in the literature, including self-
administration studies [24,71,72] and our own previous study showing
its suppressant effect on nicotine-enhanced lever-pressing behavior in
response to the presentation of a reinforcing stimulus [73]. These
results are consistent with other studies. For example, varenicline, a
partial agonist at α4β2 nAChRs, had no effect on the cue-induced
reinstatement of nicotine seeking assessed using similar extinction-
reinstatement procedures in rodents [74,75] and did not change cue-
induced craving in smokers [76]. However, blockade of the α4β2
nAChRs by (DhβE did not change the cue-triggered recovery of
nicotine-seeking behavior. That indicates the lack of a role of the
neurotransmission via the α4β2 nAChRs in mediating the conditioned
incentive motivation by nicotine cue exposure.

It is interesting to note that blockade of the α7 nAChRs by MLA
dose-dependently reduced the cue-triggered recovery of nicotine-
seeking behavior. It demonstrates the requirement of the activation of
the α7 nAChRs mediating the conditioned incentive motivation by
exposure to nicotine-conditioned environmental cues. Since neither
did MLA alter the recovery of cue-triggered food-seeking behavior nor
changed the enhancing effect of nicotine on other intrinsically
reinforcing sensory stimulus [73], MLA acted specifically at the
nicotine cue without interference with general locomotor activity,
arousal state, the motivation to earn rewards, and operant goal-
directed behavior. Therefore, the specific inhibitory effect of MLA on
the cue-induced resumption of nicotine seeking suggests that
activation of α7 nAChRs is necessary for the expression of conditioned
incentive motivation induced by nicotine-related cues. Our recent
studies (not yet published) further demonstrated that α-conotoxin
ArlB [VIIL, VI6D] microinjected into the nucleus accumbens but not
ventral tegmental area effectively blocked the cue-triggered
reinstatement of nicotine-seeking responses. The finding indicates that
the nucleus accumbens is a critical neuroanatomical substrate for the
α7 nAChRs to mediate the behavioral effect of nicotine cues.

Implications for Development of Smoking Cessation
Medications

Converging experimental evidence suggests that the α4β2 and α7
nAChRs play differential roles in mediating the reinforcing actions of
nicotine versus the conditioned incentive properties of nicotine cues.
The α4β2 nAChRs participate in nicotine primary reinforcement but
not conditioned reinforcement induced by nicotine cues, whereas α7
nAChRs do the opposite. The differential involvement of these two
nAChR subtypes indicates a dissociation of the neurobiological
mechanisms that underlie the primary reinforcing actions of nicotine
and secondary reinforcement induced by nicotine cues. High level of
α7 nAChRs is expressed in the cortico mesolimbic circuits, including
profrontal cortex, ventral tegmental area and nucleus accumbens as
well as the hippocampus and hypothalamus [18,77-79]. These
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receptors may play an essential role in the modulation of dopamine
rewarding pathways in that agonists produce cognition enhancement
[80]. That may underlie the role of α7 nAChRs in mediating the
conditioned incentive properties of nicotine cues. Interestingly, similar
dissociations were also demonstrated with other drugs of abuse. For
example, pharmacological antagonism of opioid receptors decreased
cue-induced resumption of nicotine seeking but did not alter nicotine
intake [81]. Inhibition of nitric oxide synthesis reduced cue-triggered
recovery of alcohol seeking but not the consumption of alcohol [82].
Blockade of orphan sigma-1 receptors decreased cue-induced recovery
of cocaine-seeking responses, produced no effect on cocaine intake
[83]. In summary, the reinforcement of nicotine and the conditioned
motivation by nicotine cues involve distinct neurobiological
mechanisms.

The research work reviewed above supports the continued effort to
develop nicotinic agents aiming at the α4β2 nAChRs for reducing and
eventually stopping nicotine consumption and tobacco smoking. The
α4β2 targeted medications have found increasing clinical use although
their efficacy is not yet quite satisfactory [84-86]. However, the lack of
involvement of the α4β2 nAChRs in nicotine cue effect might help
explain the inability of currently available smoking cessation
medications (nicotine replacement, bupropion, and varenicline) to
suppress cue-reactivity in abstinent subjects [74,75,87-90] because
these medications are full (nicotine) or partial (varenicline) agonist or
antagonist (one of bupropion’s actions) at the α4β2 nAChRs. In light of
the fact that cholinergic neurotransmission via the α7 subtype of
nAChRs plays a critical role in mediating the conditioned incentive
properties of nicotine cues, it is suggested that developing cholinergic
agents aiming at the α7 nAChRs may prove to be a good strategy to
prevent smoking relapse triggered by exposure to environmental cues.

These preclinical research results would have significant
implications for developing medication strategies to prevent relapse in
abstinent smokers. To our knowledge, however, there has been no
clinical trial performed to test the potential of α7 nAChR antagonists
for smoking relapse prevention. Although there have been many
studies to examine characteristics of the brain nAChRs [7-18], it is lack
of direct comparison of these receptors such as the α4β2 and α7
subtypes among different species, e.g., rodents versus humans. These
facts call for more research effort to address the issues and
acknowledge the caveats for clinical tests, if any in the future.
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