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Introduction 

Migraine is a common and incapacitating neurological disorder 
affecting 10 and 20% of the world population [1]. After the tension 
headache, the migraine is the second most frequent type of primary 
headache. Migraine affects around 12% of the adults in occidental 
countries; in US population studies, the prevalence of migraine is 
nearly 1 of 5 in women and 1 in 20 in men. The most (90%) of the 
migraineurs patients have moderate or severe pain, the majority (75%) 
of them have a loss of their labor and familial function during the head 
pain attacks, and one-third require bed rest during their attacks [2]. 

Background 

Migraine used to have its onset during puberty; however, the 
major prevalence of patients who suffer this disease is between the  
35 to 45 years old [3]; its incidence peaks between the ages of 20–24 
years in female and 15–19 years in masculine [4]; in 9 of each 10 of 
patients' first attacks occurring before age 40 years [5] exists a peak  
of disability between 35 and 44 years [6]. Migraine distinguished by 
recurrent attacks of moderate to severe unilateral throbbing pain, often 
accompanied by nausea and photophobia, phonophobia, and other 
neurological symptoms such as enhanced sensitivity to light, sound, 
touch, and smell [7]. 

Migraine is classified into two major types: migraine without aura 
(MO), the most common type, and migraine with aura (MA) [8].   
MA occurs in one-third of migraineurs further experience transient 
neurological symptoms mostly involving  the  visual  system  before 
or during a migraine attack, with visual, sensory, or another central 
nervous system (CNS) symptoms that appear before the headache and 
are associated with migraine, in the latter [7-8].Other subtypes have 
been classified, including chronic migraine and episodic syndromes 
associated with migraine. The hemiplegic migraine (HM) is a rare, 
familial, and severe subtype of MA. In this subtype, the migraine 
manifestations include motor symptoms such as transitory numbness 
or weakness, affecting one side of the body (hemihypoaesthesia or 
hemiparesis) [8] and typical aura without headache (TAWH) is a rare 
type of MA, which incidence is 3% in women and about 1% in men, 
respectively of migraine with aura patients group [9]. 

Understanding migraine physiopathology has substantially 
increased during the last decades. However, some critical knowledge 
was previously observed; four centuries ago, Sir Thomas Willis 
suggested vascular inflammation theory to explain migraine. During 
the 1940s decade, it was proposed that symptoms of migraine with aura 
could be due to a propagating cortical phenomenon, called cortical 
spreading depolarization (CSD), this theory was abandoned due to the 
advent of vascular theory as a central event in this disease proposed by 
Harold G. Wolff [10];currently, it has been exceeded. 

The quest of this review paper is to bring out a brief, analytic, and 
practical review of migraine through a vision linking molecular to 
clinical perspectives. Although clinical symptoms were described for a 
long time, molecular and genetic knowledge has exhibited a new way to 
understand and management of migraines to reach precision medicine 
of the century 

Migraine pathophysiology: stages and phases 

At present, migraine etiology is unknown, and its pathophysiology 
does not wholly understand; in the last decades, the trigeminovascular 
system has been related with definitive influences in the physiological 
alterations in this disease, and this relationship has been confirmed,   
so that it was modified migraine comprehension. It is widely accepted 
that migraine must be approached as a complex brain network disorder 
with a genetic basis. The clinical picture involves multiple cortical, 
subcortical, and brainstem regions to try to account for the pain and 
the vast constellation of symptoms characterizing the migraine attack 
[11-13]. 
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Abstract 

Migraine is a common and incapacitating neurological disorder affecting 10 to 20% of the world population; it is 

more common between females from 20 to 40 years old. 

The objective of this paper is to carry out a brief, analytic, and practical review of migraine through a vision of 

connecting molecular to clinical perspectives. Migraine was an approach as a primary neuronal network disorder, and 

some controversial topics were analyzed. New pieces of knowledge have provided innovative possibilities for effective 

management for intractable cases, and it allows a better understanding of migraine complications. 
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Some migraine issues have reached consensus. Others are still 

polemic. It is an agreement migraine is a neuronal network disorder, 
involving integrated activities across subcortical and cortical brain 
circuits that are important in headache and altered sensory processing 
[12]. It is controversial if changes in the brain in migraine are genetically 
determining or due to chronic pain; in fact, both are possible. 

According to the current migraine perspective, this analysis  was 
divided into a) inter-ictal stage (brain alterations in migraine people, 
without migraine attack), b) ictal stage(premonitory phase, aura phase, 
headache phase, postdrome phase) and an unanswered question    
in migraine how does a migraine attack stop? finally, it concisely 
approaches topics as migraine chronic, CGRP and migraine, migraine 
and genetics, sleep and migraine, and psychiatric comorbidities in 
migraine. 

The dysfunction in the migraine of the trigeminovascular system is 
characterized by the release of CGRP (peptide related to the calcitonin 
gene), causing vasodilation. It is associated with aseptic inflammation 
that initiates the transmission of the nociceptive impulse to the 
trigeminal ganglion (GT) until caudalis trigeminal nucleus (first-order 
neuron). Furthermore, from there to second and third-order neurons 
where various neurotransmitters such as norepinephrine (NA), 
Serotonin (5HT) and Dopamine (DA) are involved, and structures  
play a different role (coeruleus nucleus, periaqueductal gray matter, 
hypothalamus, thalamus, and cerebral cortex) which are involved in 
premonitory symptoms, attack of pain and postdrome symptoms. 

Inter-ictal stage (brain alterations in migraineurs patient) 

The brain of migraine people brain works differently than non- 
migraine people. However, it does not know how or when changing 
occurs. The evidence supports that a genetic predisposition and   
too repetitive ambient events must match in disease devolvement. 
Triggering events produce a migraine attack only in migraineurs; the 
brain in migraine has changes of neural cells in basal conditions so 
that neurons will able to respond to activation for internal or external 
stimulus [12]. 

In imaging studies have been observed both structural and 
functional  brain  alterations  in  migraine  individuals.  Additionally,  
it has been found in clinical and neurophysiological observations, a 
chronic hypersensitivity to sensory stimuli, and cortical excitability. 
All of this may make these patients susceptible to CSD devolvement; 
both are particular changes in migraine [14-17]; these modifications in 
the brain of migraine patients can be the result of repetitive exposure 
to pain and stress; besides that, the brain biology of migraine sufferers 
appears to differ from healthy controls [18].So that migraine attack 
may be triggered by several external factors, including lack of sleep, 
stress, prolonged fast, between others, but these trigger factors only 
lead to migraine attacks in migraineurs. 

Brain changes in migraineurs have been consistently demonstrated. 
It was recognized structural differences in migraineur's brain vs. 
control subjects; in structural analysis using the cross-sectional 
method was observed changes in the via of functional interactions    
of pain processing areas with the trigeminal system; in Voxel-based 
morphometry confirmed reduction in the grey matter processing areas 
of pain. These areas are the anterior cingulate cortex, amygdala,  insula, 
operculum, and the frontal, temporal, and precentral gyri. Peculiarly, 
grey matter reduction in the anterior cingulate cortex was associated 
with the frequency of migraine attacks [19]. 

An interesting Meta-analysis [20] that included eight clinical 
studies with 390 subjects (191 patients and 199 controls), and 
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five functional studies with 199 participants (93 patients and 96 
controls), many morphological and functional modifications were 
documented. In Activation Likelihood Estimation (ALE) showed that 
the migraineurs had concordant decreases in the Grey Matter Volume 
(GMV) in the bilateral inferior frontal gyri, the right precentral gyrus, 
the left middle frontal gyrus, and the left cingulate gyrus; and GMV 
decreases in the right claustrum, left cingulated gyrus, right anterior 
cingulate, amygdala and left parahippocampal gyrus and were related 
to the estimated frequency of headache attack. Also, activation was 
found in the somatosensory, cingulate, limbic lobe, basal ganglia, and 
midbrain in migraine patients. This meta-analysis concluded that 
gray matter changes in migraineurs could be the mechanism of pain 
processing and their associated symptoms. Even more, modifications 
in the frontal gyrus might predispose a person to pain conditions and 
in limbic regions could be accumulated damage due to the repetitive 
occurrence of pain-related processes; finally, increased activation in 
the precentral gyrus and cingulate opposed to GMV decrease might 
suggest increased effort due to disorganization of these areas and the 
use of compensatory strategies involving pain processing in migraine. 

As well, voxel-based morphometry with T1-heightened 3T MRI 
showed lower grey matter density in the right hemisphere (inferior 
parietal, inferior temporal gyrus, superior temporal gyrus), and left 
temporal pole during the interictal period in migraine without aura 
patients [21]. These observations suggest plastic changes attendant 
to the migraine attack that may underlie disorder progression, but it 
remains unclear if they are the migraine cause or effect. 

Also, it has been demonstrated that the possibility to develop 
migraine attacks can be provoked by functional or structural alterations 
in pain processing areas such as the anterior cingulate cortex and the 
trigeminal somatosensory system, again, it is unclear if these changes 
are the consequence of the episodic migraine attacks or if they are 
related in its pathophysiology [22]. 

Basal Nuclei and their connections also have exhibited changes 
in brain migraine; grey matter in both caudate nuclei are enlarged in 
migraines with high-frequency attacks vs. patients with low-frequency 
attack [23]. The somatotopic representation of head and face in the 
somatosensory cortex is observed increased thickness vs. controls. 
Moreover, there is a reduced fractional anisotropy in migraineurs along 
the thalamocortical tract. In migraineurs with aura, this change is also 
observed in the ventral trigeminothalamic tract, and the ventrolateral 
periaqueductal gray [24]. An international study 3T scans from 131 
migraineurs showed volume loss in patients compared with controls 
in the central nuclear complex, anterior nucleus, and lateral dorsal 
nucleus, as well as reduced striatal volume [25]. 

Hippocampus has been of particular interest in migraine, a review 
by Liu et al [26] found that there was decreased volume in newly 
diagnosed migraine patients after one year; it observed an adaptive 
volume increase to low headache frequency; interestingly, the volume 
decreases at higher headache frequency as the maladaptive response. 
Nociceptive activation hippocampal is more significant in patients with 
migraine compared to healthy controls and correlated to headache 
frequency. More significant deactivation and higher functional 
connectivity linked to other pain-processing regions in low frequency 
compared to high-frequency migraineurs were documented; at resting 
state (inter-ictal stage), intraregional functional connectivity of 
hippocampus was lower, and its connectivity to other brain regions was 
different in patients carrying specific genetic variants so that supporting 
the genetic origin of this modifications. Also, these authors found more 
reliable connectivity between the hippocampus and other cortico- 
limbic regions, and some of the altered connectives are responsible for 
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migraine-associated allodynia or placebo effect of migraine. Finally, 
they concluded headache frequency, and the growing number of 
migraine attacks, the anxiety score, the depression score, and genetic 
variants can be related to hippocampal morphology and functional 
changes in people with migraine. 

The thalamus is an important sensorial relive; it is a nociceptive 
nuclei  station  where  arrives  information  from  the  dura  mater,  
and cutaneous regions, are conveyed through second-order 
trigeminovascular neurons. It is considered a central area for the 
processing and integration of nociceptive stimuli, and its connection 
to different cortical areas such as the somatosensory, limbic motor, 
visual, auditory, and olfactory regions can explain the complexity of 
migraine features [27,28]. Thalamo-cortical transmission is continually 
modulated by different pathways involved in cognition, emotion, and 
autonomic responses. It has been reported structural and functional 
thalamic alterations in migraineurs during the ictal and interictal 
stages, which can be detected from childhood and might be related    
to the onset of the migraine attack. The thalamus has shown to be a 
critical area for the development of sensory hypersensitivity to visual 
stimuli and mechanical allodynia [24,25,29-33,35]. 

All these anatomic and functional findings in both ictal and inter-
ictal stage support that the brain of the patient with migraine    is 
functional and morphologically different; and can explain why 
external or internal stimuli produce migraine attacks only in migraine 
people. More brain structures are in a study in migraines, y surely new 
knowledge could change the approach of migraines. 

During inter-ictal stage migraine, patients kept asymptomatic; 
again, if these differences are genetics or acquired still debate, of course, 
both are possible. 

Ictal stage 

(premonitory phase; aura phase; headache phase; postdrome phase 
and an unanswered question in migraine. How does a migraine attack 
stop?) 

Premonitory phase 

A premonitory phase is a period between alterations homeostasis 
and the onset of migraine attacks. This phase can begin as early as three 
days before a migraine headache and allows some patients correctly to 
predict migraine attack up hours or days before its beginning [ ]. The 
majority of migraines experience a range of premonitory symptoms 
well before the typical migraine headache initiates. Despite being 
described for a long time, their pathophysiological relevance and their 
clinical implications have been primarily neglected [37]. 

Patients' symptoms include fatigue, mood changes, food cravings, 
yawning, muscle tenderness, and photophobia, the involvement of the 
hypothalamus, brainstem, limbic system, and assured cortical areas 
during the early stages of an attack have been observed [38,39] From 
the observation of that in some patients, the migraine attack is triggered 
at a specific time of day. This "time-triggering" has been associated 
with circadian alterations in homeostasis. So that, it was suggested 
that the involvement of chronobiological mechanisms in migraine 
pathogenesis pointed to the hypothalamus as a potential area of origin 
of premonitory phase and the migraine attack [8,40,41]. Also, imaging 
studies using H2O PET show an increase in hypothalamic blood flow 
during the presence of premonitory symptoms [42] supporting the 
theory that the hypothalamus is the area of origin of a migraine attack. 

Other researchers have focused their study on other diencephalic 
structures;  some  are  considering  the  hypothalamus  as  the  first 
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generator of a migraine attack [42]. In positron emission tomography 
using cerebral blood flow as a marker of neuronal activity in patients 
with glyceryl trinitrate-induced migraine attacks, activations were 
observed in the posterolateral hypothalamus region, midbrain 
tegmental, the periaqueductal gray, in dorsal pons, and various cortical 
areas during this phase. Moulton et al. [43] using functional magnetic 
resonance imaging during the interictal phase detected sturdier 
functional connections between the hypothalamus and other areas of 
the encephalum related to pain transmission and autonomic function 
in subjects with migraine compared with healthy controls, which may 
account for some of the autonomic symptoms manifested during 
interictal and premonitory phases. Molecules in high concentration 
in the hypothalamus as Dopamine, Vasopressin, and the orexins  
are associated with the premonitory phase. Thus, the hypothalamus 
involvement during the early stage of migraine has achieved an 
absolute consensus, so that it was postulated that the hypothalamus is a 
basic structure for facilitating and amplifying pain transmission during 
a migraine attack. To explain how the hypothalamus participates in 
migraine attacks have been proposed several theories. One of them 
proposes that there is an increased parasympathetic activity over the 
meningeal nociceptors. Another hypothesis involves the modulation of 
nociceptive signals from the spinal trigeminal nucleus to supratentorial 
structures implicated in pain processing [44,45]. However, despite the 
evidence, it has not reached consensus about of hypothalamus role as 
an initial trigger of migraine attacks. 

In the recent International Classification of Headache Disorders 3rd 
edition (ICHD-3), the migraine with aura has been defined as recurrent 
and episodic events. These attacks are lasting minutes of unilateral, 
fully reversible, visual, sensorial, or other CNS manifestations that, in 
general, develop gradually and are usually followed by headache and 
other associated migraine symptoms [8]. At least 33 % of migraine 
attacks are preceded by an aura [46] the most common aura symptoms 
are visual disturbances, others frequent symptoms include sensory, 
speech/language, and motor disturbances, plus the disruption of higher 
cortical function [47]. Aura phase happens immediately preceding or 
concurrent with the headache. 

Cortical Spreading Depression (CSD) is a unique event in the brain 
of the migrainous during the aura phase. It was described in 1944 by 
Aristides Lao, which is characterized by a slow, the wave propagation 
of this depolarization in neuronal and glial cell membranes that is 
followed by inhibition of cortical activity for up to 30 minutes, strongly 
coinciding with the initiation and progression of aura symptoms [48- 
52]. 

CSD is associated with a phase of hyperemia, followed by a 
prolonged phase of cortical oligemia [53,54]. This slowly propagating 
wave of intense but transient regional depolarization of most neurons 
and glia (possibly all brain cells). That propagates at velocities of  
~ 3–5 mm/min in brain tissue and ~1.7–9.2 mm/min in  the  gray 
matter [55], lasting up to a minute or more in otherwise healthy tissue  
due  complete  membrane  depolarization  impedes   action   potentials 
and synaptic transmission; it is accompanied by suppression of all 
spontaneous or evoked electrical activity in that region. Thus it  was 
called “depression”; however, the term depression is a misnomer as  
the underlying electrophysiological process is a near-complete and 
prolonged depolarization (i.e., strong excitation) [56]. 

CSD initiation and propagation mechanisms are not entirely 
understood. Local elevations initiate the CSD in extracellular potassium 
(K+) resulting from chronically depolarize cells. This accumulation 
of extracellular K+ seems to be the consequence of recurrent 
depolarization and repolarization of preexisting in cortex neurons, and 
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additionally, accumulation of K+ extracellular produces a depolarize of 
the same cells from which it was released [50,51,55,57,58].  

 
 

Headache phase 

Activation of the trigeminovascular system 
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The excessive efflux of K+ yields significant disruption of cell 
membrane ionic gradients with the influx of sodium (Na+) and 
calcium (Ca2), and glutamate is released [58]. The exchange of 
intracellular and extracellular components during CSD is composed of 
a sizeable ionic influx (Na+, Ca2+), and water. Furthermore, efflux of 
K+, H+, glutamate, and adenosine triphosphate (ATP); the increase of 
extracellular K+, rather than glutamate diffusion, might be the leading 
event that depolarizes adjacent cells [59,60]. 

Even more, for CSD propagation, several hypotheses have been 
proposed; current evidence suggests the propagation is regulated via 
gap junctions between glial cells or neurons, the opening of neuronal 
Panx1 mega-channels releases molecules that trigger an inflammatory 
cascade, which activates neighboring astrocytes and leads to sustained 
release of inflammatory mediators [50]. Further, many studies support 
that CSD could activate trigeminal nociception and thus trigger 
headache mechanisms [61,62]. However, there is no consensus about 
that CSD is the cause of the initiation of headache [63].  

If CSD activates trigeminal nociception and thus triggers headache 
mechanisms is still controvert, but its relation with the aura, in 
particular the visual aura, has reached consensus [64] it has postulated 
that a positive symptom results from cortical hyperexcitability of a  
cerebral region while the scotoma (negative symptom) is related to    
an area of diminishing of cortical activity spreading across the visual 
cortex. The CSD has a congruent temporal pattern, and spread raised 
the possibility that CSD was the underlying electrophysiological event 
of the aura in migraine [64]. 

It is essential to highlight the association of CSD to oligemia. In 
cerebral blood flow measurements studies in migraine patients were 
observed phenomena of cortical electrical spreading and oligemia 
during migraine attacks with aura [65] these modifications were 
confirmed through imaging and physiological tests and its association 
to the perception of visual symptoms and CSD-typical, however, in 
imaging studies were observed that in the hypoperfusion associated to 
migraine aura, the timing and distribution of this hypoperfusion is not 
rigorously correlated with specific migraine symptoms [66,67]. Non- 
visual symptoms of aura as sensorial, sensitive, cognitive symptoms, 
and others, are a challenger in their explication. Some migrainous with 
aura sufferer experience sensory and visual symptoms simultaneously 
(i.e., without succession) thus is possible in addition to spread, CSD 
may be generated in different cortical regions simultaneously [68].  

There have been demonstrated the modifications in sanguine flow 
and changes in blood vessel caliber during a migraine attack; this change 
is not always correlated to a specific migraine clinical phase. Clinical 
relationship between the aura and headache in migraine people are  
still in debate; while some migraine attack will experience aura without 
headache both the most of them the aura are accompanied by headache 
(91%); although, the headache can occur before or simultaneous with 
aura, in the most of cases (78%) happen after the aura starts (during the 
aura phase in 28.7%; at the cessation of the aura in 12.1%; or after aura 
cessation in 37.6% of the attacks) [64,68]. 

Accordingly, and despite still many events that must be elucidated, 
cortical spreading depression (CSD) concept was a turning of in our 
clinical understanding of migraine. However, most of the migraine 
attacks are not preceding by clinical aura; in fact, the aura may occur 
after the headache has begun, and some patients may experience aura 
but not the subsequent headache, so that relationship aura headache in 
migraine is not definite yet. 

Trigeminovascular system is one of a critical structure in the 
expression of migraine headache; this system includes the peripheral 
axons from the trigeminal ganglion to reach the meninges and 
intracranial arteries and converge in of the trigeminocervical complex 
(TCC) that contain the trigeminal caudalisnucleus until the  dorsal 
horn of C1–C2 segments of the spinal cord. 

The complex brain network disorder is kept on control during the 
inter-ictal phase, but when the control by the brain is of its homeostasis, 
leading to the activation of the trigeminovascular system and a cascade of 
events occurs [12]. Trigeminal activation starts in the headache phase; thus, 
TCC activation is a cardinal event to the cascade of happenings resulting 
in the migraine pain due to its direct connection with crucial brain centers 
such as diencephalic and brainstem nuclei [69,70]. 

TCC outputs fibers converge with projections from extracranial 
structures neurons that accounts for pain perception in the periorbital, 
occipital, and cervical-neck regions. Afferent pathways from the TCC 
transmit multiple signals to different places: the brainstem, thalamus, 
hypothalamus, and basal ganglia nuclei. These nuclei send connections 
to multiple cortical areas, including the somatosensory, insular, motor, 
parietal association, auditive, visual, and olfaction cortices. All these 
areas are involved in processing the cognitive, emotional, and sensory- 
discriminative aspects of the nociceptive signals and give an increase 
to some of the characteristic symptoms of migraine attacks, such 
asphotophobia, phonophobia, cognitive dysfunction,  osmophobia,  
and allodynia [27,71,72]. Nevertheless, the causes of the losing of brain 
homeostasis and the subsequent TCC activation are uncertain. 

Trigeminovascular pathway activation phenomebegins 
peripherally after nociceptive neurons from the dura mater are 
stimulated and discharge vasoactive neuro-peptides, causing signaling 
along the trigeminovascular pathway. TCC activation takes place by 
turning on nociceptors that innervate the blood vessels of the skull 
(starting with the turn-on of trigeminal bipolar neurons, thought to 
ventral-posterior-lateral thalamic nuclei and, finally, sensitive cortical 
areas [47]. Perivascular neurons send signals through transmitted by 
endogenous mediators, among them: a) vasoactive neuropeptides, b) 
calcitonin gene-related peptide (CGRP), c) substance P, neurokinin 
A, and pituitary adenylate cyclase-activating peptide (PACAP), as 
well as the release of vasoactive inflammatory mediators such as nitric 
oxide associated to meninges inflammation [13,45,46,63,73]. When 
activation reaches nociceptive neurons that innervate the dura mater, 
and vasoactive neuropeptides are released, both begin signaling along 
the trigeminovascular pathway. The arterial vasodilatation, mast cell 
degranulation, and plasma extravasation are involved, and the physio- 
pathogenesis remains unclear. 

As it was the comment above, some researchers have proposed 
that CSD beginning the activation of meningeal nociceptors through 
released of ATP, glutamate, K+, hydrogen ions, CGRP, and nitrous 
oxide; these molecules diffuse toward and activate meningeal 
nociceptors; this neuronal activation occurs approximately 14 minutes 
after CSD had been induced, reliable with the time between the onset of 
aura and onset of migraine headache. Otherwise, CSD may increase the 
activity of central trigeminovascular neurons in the spinal trigeminal 
nucleus, supporting that CSD results in order activation of peripheral 
and then central trigeminovascular neurons 

As was the comment above, some researchers have proposed that 
CSD is beginning with the activation of meningeal nociceptors through 
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released ATP, glutamate, K+, hydrogen ions, CGRP, and nitrous oxide. 
These molecules diffuse toward and activate meningeal nociceptors; 
this neuronal activation occurs approximately 14 minutes after CSD 
had been induced, reliable with the time between the onset of aura and 
onset of pain headache [62]. Otherwise, CSD may increase the activity 
of central trigeminovascular neurons in the caudally trigeminal nucleus. 
All of this is supporting that CSD results in a sequential activation 
starting with the peripheral and then central trigeminal neurons [74]. 

Additionally, studies preclinical have exhibited, that CSD can 
disinhibit central trigeminal sensory neurons by a mechanism intrinsic; 
and sensory blockade of the trigeminal ganglion did not interrupt 
CSD-induced activation of second-order trigeminovascular neurons   
in the TCC [75]. Hence it could elucidate some clinical observations as 
the development of mechanical allodynia (neck discomfort) before the 
development of headache. The timing between aura to migraine 
headache symptoms have been evaluated, and it immensely varies 
according to the aura symptoms; many patients have manifestations 
such as nausea (51%), photophobia (88%), sonophobia (73%), and 
head pain (73%) during the aura phase. Around 11% reported the 
headache as starting simultaneously with the aura [76]. 

Peripheral Sensitization. 

After peripheral trigeminovascular neurons are activated to 
become sensitized to dural stimuli, their threshold decreases, and 
the magnitude of their response increases, which considered to be 
responsible for the characteristic throbbing migraine headache, and 
its exacerbation by bending over or coughing. Peripheral Sensitization 
increases sensitivity to sensory stimulation perhaps by hyper- 
responsiveness within primary afferent fibers and central neurons; 
Inflammatory mediators that stimulate activation and sensitization of 
peripheral trigeminovascular neurons remain no understood [77]. 

Central Sensitization 

Sensitization of trigeminovascular neurons in the TCC and 
thalamic nuclei are responsible for cephalic and extra cephalic 
allodynia and produce a raising spontaneous neuronal activity and a 
heightened response to innocuous stimuli. In Cephalic allodynia from 
sensitization in the spinal trigeminal nucleus, clinical symptoms are 
scalp pain and cephalic muscle tenderness; these symptoms develop 
over 30-60 minutes reaching a maximum after 2 hours. Thalamic 
sensitization is delayed; it starts after 2-4 hours and is responsible   
for extracephalic allodynia. This cutaneous allodynia may occur by 
repeated activation and sensitization of the central trigeminovascular 
pathways, hence persistent central sensitization  increasing  the  risk 
for developing chronic migraine [78,79]; hence, sensitization of pain 
relevant brainstem regions, including peripheral trigeminovascular 
neurons to dural stimuli, is thought to produce the peculiar sensation 
of throbbing pain in migraine [38,43]. 

Besides, nociceptive trigeminovascular signals reaching the 
thalamus may be modulated by the release of neuropeptides/ 
neurotransmitters from hypothalamic and brainstem neurons  [7]. 
They are regulating the firing of spread trigeminovascular neurons. The 
excitatory activity can shift the firing of thalamic trigeminovascular 
neurons to tonic mode. Contrary, if neurotransmitter is inhibitory, the 
shift is to burst mode [ ]. The inputs from hypothalamic and brainstem 
neurons can hence provide high and low setpoints for the allostatic 
weight (the amount of physiological or emotional stress that can be 
managed by the brain). In patients with migraine and consequently 
determine whether nociceptive signals are transmitted to the cortex 
(pain cortical involvement) [7,81]. 
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Additionally, migraine-associated symptoms, such as nausea, 

vomiting, thirst,  lacrimation,  nasal  congestion,   and   rhinorrhea, 
are revealing central autonomic function dysfunction. There is an 
alteration in both the sympathetic and parasympathetic systems. The 
alteration can be observed since the premonitory phase through to the 
postdrome. That can explain that stress, awakening, or other changes 
in physiological or emotional to be migraine triggers by increased 
parasympathetic activity, subsequently activation of meningeal 
nociceptors [50,82]. The Sympathetic activation into the meninges 
produces the release of norepinephrine. Turning on the dural afferents 
fibers, and dural fibroblasts yield pro-nociceptive signaling activity 
[83]. 

The kappa-opioids system is activated in response to stress- 
induced corticotropin-releasing hormone and dynorphin release and 
may also play a role in stress-induced migraine. These changes involve 
complex networks projecting to preganglionic parasympathetic 
neurons in the superior salivatory nucleus. This activation results in 
peripheral nociceptor activation through the release of neuropeptides 
of a parasympathetic efferent neuron that innervate the meninges and 
meningeal blood vessels; sympathetic activation into the meninges 
encourages norepinephrine release followed beginning to pro- 
nociceptive signaling through actions on both afferents fibers and 
fibroblasts dural [84,85]. 

The complete explanation of the headache migraine remains a 
challenge. Although during the last decades of the XX century were 
proposed that migraine may be related to a sterile inflammation of the 
dura mater (neurogenic inflammation). The pharmacological blockers 
of specific plasma protein extravasation as acute or preventive migraine 
treatments can be used [86,87]. 

In human studies was observed the role of the brainstem regions in 
migraine headaches. Especially the periaqueductal grey matter (PAG) 
and the dorsolateral pons (DLP) in migraine attacks, has been called the 
‘migraine generator’ [14,33,88,89]. Subsequent experimental observations 
supported that the brainstem might act as a driver of changes in cortical 
activity during a migraine; the role of the rostral ventral medulla, the  
locus coeruleus,  the  superior  salivatory  and  cuneiform  nucleus—in  
the modulation trigeminovascular pain transmission and autonomic 
responses in migraine is well established [11,89,90]. 

Additionally, there is evidence showing antimigraine drugs such  
as triptans, ergot derivatives, and CGRP receptor antagonists can 
precisely modulate activity in the trigeminal-cervical complex, which 
might explain their effect in aborting migraine [91-96]. Despite these 
pieces of evidence, the validity of the brainstem generator theory has 
been widely debated in the last few years, so diencephalic structures 
and cortical areas have been proposed. 

Furthermore, Calcitonin gene-related peptide  (CGRP)  has  
gained significant importance in the migraine  approach  and  has  
been implicated in the development of new therapies for migraine 
management, which target is this molecule [97]. Nevertheless, in 
migraine are involved a complex network of structures of Peripheral 
Nervous System, brain and many molecules, so that, CGRP must not 
be to consider a panacea for this condition only as a promising option. 

Undoubtedly, the activation  of  the  trigeminovascular  complex  
is linked to migraine pain. However, many questions remain still 
unanswered. 

Postdrome phase 

The postdrome phase includes diverse clinical manifestations 
similar to those occurring during the premonitory phase. This migraine 
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phase has been for a long time neglected; however, its understanding 
could open new options in migraine management. The findings from 
studies that have focused on this last phase of a migraine attack indicate 
that its characteristic symptoms reflect those observed during the 
premonitory phase [98-100]. 

A prospective electronic diary study showed that 81% of patients 
are left disabled with non-headache symptoms in the migraine 
postdrome. These patients report at least one of them; also, it was 
documented in Functional Imaging widespread reduction in the blood 
flow in the postdrome, which may explain the arrays of symptoms 
experienced [101]. Hence, it is crucial to know this phase better  and 
hope that more effective treatments will become available shortly to 
lessen the morbidity associated with this phase. 

Many and varied symptoms are included into Postdrome syndrome, 
the more common are: tiredness (71.8%), head pain (33.1%), cognitive 
difficulties (11.7%), 'hangover' (10.7%), gastrointestinal symptoms 
(8.4%), mood change (6.8%), and weakness (6.2%); they may follow 
to the resolution of the headache, persisting for up to 48 hr [100, 101]. 

It has been proposed that Postdrome syndrome symptoms might 
reflect a slow decline in migraine processes that could be accounted 
for by involvement of the whole brain, remarkably the frontal lobes, 
and the hypothalamus. Thus, these symptoms could be explained by 
a diffuse cortical and subcortical involvement. Also, It has suggested 
might be explained by widespread vasoconstriction mediated by an 
alpha2-adrenoreceptor by activation of brainstem nuclei, and locus 
coeruleus might play a pivotal role in this process. An alternative 
hypothesis put forward that hypoperfusion associated with cortical 
spreading depression is keeping during the migraine headache until the 
postdrome stage [102], so it remains unclear whether these symptoms 
initiate in the premonitory phase and persist throughout the headache 
phase into the postdrome phase, if they may also initiate during the 
headache phase, or even appear after the headache phase has ended. 

Migraineurs commonly relate symptoms  of  the  postdrome 
phase as an effect of the medication that successfully abolished their 
headache, indicating that these symptoms may appear or reappear after 
the headache phase has ended. A meta-analysis of clinical trials 
revealed that postdrome symptoms are seen in the placebo arm most 
prominently when pain is relieved. Which does not support that these 
clinical manifestations are from the pharmacological origin [103]. 

Innovative neurological techniques will be a valuable noninvasive 
tool to push the frontiers in the understanding of migraine 
pathophysiology. These methods may help shed further light on the 
possible links between fundamental brain areas and their networks that 
could be implicated in the pathophysiology of the various migraine 
phases. 

Why is migraine over the attack? 

For most patients, the migraine attack spontaneously ends after 
some hours to start. It is also frequent that certain events, such as 
emesis or sleep, to abort migraine completely; these features imply 
effective regulation itself, rather than a passive process into the 
cessation of a migraine attack; but implicated mechanisms are not 
complete comprehended [104]. 

It has widely documented that ascending connections from the 
TCC forward several areas of the brain are involved in the nociceptive 
somatosensory information from the head and face, which determines 
how the pain is perceived. Also, many endogenous mechanisms 
modulate trigeminovascular nociceptive traffic, which can further  
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determine the perception of this information. There is convincing 
evidence of the brain stem activation and diencephalic nuclei before, 
during, and after the cessation of the migraine attack, which cannot be 
explained as solely a consequence of the pain response [33,38,105,106]. 

Migraine headache triggers a complex endogenous analgesic 
mechanism; descending  modulation  of  somatosensory  processing is 
knowing since a long time; however, from brain stem modulation can 
have both a facilitator effect, contributing to chronic pain and an 
inhibitory influence, through supraspinal and spinal stimulation, on 
spinal nociceptive processing [107-109]. Some brainstem nuclei can be 
headache activators and trigger analgesic mechanisms according to the 
timing of migraine attacks. 

Many molecules and neurotransmitters are involved in the 
endogen analgesic mechanism; knowledge improves about these 
endogen analgesic mechanisms could provide new and better options 
for migraine headache management, and understanding to progression 
to chronic migraine form could help to establish strategies to avoid this 
progression. 

Finally, understanding the factors associated with headache 
beginning and cessation might provide insights into the mechanisms 
of attack initiation and termination, and perhaps shed light on the issue 
of why there being different subtypes of migraine [110-112]. 

Migraine and genetics 

Relationship between migraines to genetic has been studied a 
long time, but in the last decades has been intensified; its heritability 
unquestionable, its higher prevalence in women, and the neuronal 
hyperexcitability have been the essential topics from which the genetic 
study has been developed. 

Heritability is a convincing argument about genetics implications 
in migraine understanding. A study compared the prevalence and 
heritability of migraine across six of the countries that participate in 
the GenomEUtwin project. It was included a total number of 29,717 
twin pairs, the heritability it was found from 34% to 57% [113]. Family 
and twin studies estimate its heritability of 42% (95% confidence 
interval [CI] = 36– 47%) for migraine [114]; in other words, 42% of the 
migraine phenotype is attributable to the genetic material. 

The heredity of migraine is likely to differ according to the migraine 
type. In population-based study relatives, the first degree relatives of 
probands of migraine without aura had double the risk of migraine 
without aura (compared with the general population) and 1.4 times 
the risk of migraine with aura. In essence, the first degree relatives 
of probands of migraine with aura had nearly four times the risk of 
migraine with aura and no increased risk of migraine without aura 
[115-117]. 

Familial hemiplegic migraine (FHM) is a rare form of migraine 
characterized by migraine attacks accompanied by transient unilateral 
motor weakness, with inherited in an autosomal dominant pattern; 
FHM was the first migraine-type with clear association genetic 
identified. Genes identified in FHM encode for proteins that modulate 
the availability of glutamate at synaptic terminals. Thus increasing 
neuronal excitability and have been classification in three types: a) 
Familial Hemiplegic Migraine type 1 (FHM1) is related to a mutation 
in CACNA1A on chromosome 19p13 that encodes for the α1 subunit 
of voltage-gated Ca21 channels that control neurotransmitter release  
at synapses. b) Mutations provoke familial Hemiplegic Migraine type 
2 (FHM2) in ATP1A2 on chromosome 1q23, which encodes for the  
α2 subunit of Na1/K1-ATPase, which is expressed in the glial cells and 
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reuptake glutamate from the synaptic cleft. Either FHM1 as FHM2 
mutations provoke hyper excitatory activity through the unregulated 
release and reduced reuptake of glutamate from the synaptic cleft. 
Furthermore, FHM type 3 (FHM3) results of a mutation in SCN1A   
on chromosome 2q24 that encodes for the α1 subunit of voltage-gated 
Na1 channels which are expressed on inhibitory interneurons and 
cause unregulated firing of excitatory neurons [118,119]. 

Even though agreement about FHM is a genetic form  of  
migraine, most of the migraine cases are polygenic and multifactorial 
(environment) forms; thus to find the genes panel involved for each 
population is a challenge. 

Neurophysiological studies have confirmed the presence of general 
neuronal hyperexcitability in the brain of migraine patients [120]. This 
neuronal excitability increasing occurs to respond to a wide range of 
stimuli (visual, somatosensory, and auditory and brainstem reflexes)  
in response to nociception. [121,122]. Also, the encephalic structures 
of migraineurs patients display a lack of habituation in answer to 
repetitive stimulation [123]. As it has commented above, the brain     
of migraine patient is hyper-responsive to sensory stimuli during the 
interictal phase [124,125]. Thus it has been considered that the general 
neuronal hyperexcitability could elucidate  the  increased  sensitivity 
to sensory stimuli observed in patients with migraines during the 
interictal phase [126] and its hyper-responsiveness contribute to the 
development of central sensitization. It can explain why there is greater 
activation in pain-facilitating regions and decreased activation in pain- 
inhibiting regions as a response to painful stimuli in patients with 
migraine [127]. Once neuronal hyperexcitability and hyper-responsive 
to sensory stimuli were documented in the brain of migraines patients, 
the following question was: why do they occur? 

Genetic variations associated with migraine may provide insights 
into the mechanism(s) for the generalized neuronal hyperexcitability 
seen in these patients [128,129]. Even though genetic association 
studies have revealed the molecular mechanisms that contribute to 
pathophysiology, however, understanding has been limited partly 
because, to date, only a few genome-wide significant risk loci have been 
identified related to the prevention of migraine. 

The underlying basis for cellular hyperexcitability in migraine is 
unclear. Nevertheless, genetic factors seem to play a crucial role; sizeable 
genome-wide association studies (GWAS) have identified genetic loci, 
which could predict susceptibility to suffering migraine both with and 
without aura. The susceptibility genetic variants identified some of them 
might regulate glutamate-mediated neurotransmission (MTDH, LRP1, 
MEF2D genes). In contrast, others regulate growth, evolvement, and 
plasticity synaptic (ASTN2, FHL5 genes) and ion channels (KCNK5, 
TRPM8 genes), in addition to ion homeostasis (SLC24A3, near ITPK1, 
near GJA1 genes) [130-133]. 

The involvement of the vascular system and migraine has been 
investigated form a genetic  perspective.  A  meta-analysis  [131]  of 
22 GWAS, Single Nucleotide Polymorphisms (SNP) associating to 
migraine involved in arterial smooth muscle function, that alterations 
in vascular smooth muscle function are likely to play a more critical 
role in migraine pathogenesis; this is consistent with the increased risk 
of stroke and cardiovascular disease in migraine patient, especially in 
migraine with aura patient. It is also consistent with the predominance 
of the central neuronal mechanisms immersed in migraine, assuming a 
very close anatomical and physiological relationship between the blood 
vessel and neuronal and glial cells in the neurovascular unit [134]. The 
regional cerebral blood changes have been different in MA and MO so 
that some researchers had considered both MA and MO as different 
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entities. However, at present, the most agree both are the same entity 
[135,136]. 

For a long time, the participating in genetic in migraines has 
reached a consensus, which genes and epigenetic mechanisms are 
involved remain in the study. 

CGRP and migraine 

Currently, CGRP as a target to management migraine attack is a 
topic to analyze. What is the peptide CGRP? This CGRP is a 37 amino 
acid neuropeptide encoded by the calcitonin gene (CALCA) which 
perform an essential role in cardiovascular, digestive, and sensory 
functions; CGRP and its receptors are expressed all over the body, 
predominantly in the central and peripheral nervous systems, the 
cardiovascular system and the gastrointestinal system [137,138]. 

The CGRP has been implicated in the neuronal sensitization and 
pain genesis, most markedly in meningeal vessels in the migraine 
[139]. Substantial evidence supports CGRP is a crucial player in the 
pathogenesis of migraine. The CGRP is a potent vasodilator that is 
localized in afferents innervating blood vessels [139]. CGRP is also 
working as a neuromodulator that can enhance synaptic transmission 
mediated by glutamatergic signaling; CGRP can be finding in jugular 
venous blood during migraine attacks [140]; intravenous application of 
CGRP triggers migraine attacks only in migrainous patients [141,142].  

CGRP seems to act at CGRP seems to act at different levels along 
the trigeminovascular pathway; peripheral release of CGRP in the 
meninges sources arterial vasodilatation, and can outcome in sterile 
inflammation meningeal and activation of meningeal nociceptors; 
further, by the way indirectly to produce plasma extravasation by 
increasing substance P release CGRP in the TCC may facilitate 
nociceptive transmission by increasing the release of neurotransmitters 
from adjacent primary afferent terminals [138-140]. 

New strategies in migraine management blocking CGRP receptors 
are available; they are very promising, particularly in chronic migraine. 

Chronic migraine 

Chronic migraine is a common cause of chronic daily headache 
(CDH) disorders, is characterized by the frequency of headache 
attacks with at least 15 headache days per month; the attacks are less 
intense and use to be atypical but is associated with worse treatment 
response. Undertreated headache and associated comorbidities in CM 
cause a more significant disease burden compared with EM patient 
[140-141]. It is estimated that approximately 3% of Episodic Migraine 
(EM) patients evolve to CM per year[142], it is remarkable the bi 
directionality between EM and CM, it is remarkable the bi directionality 
between EM and CM about 26% of CM patients remitting to EM in    
a two-year follow-up [143], which makes it difficult to confirm the 
accurate prevalence of CM. Although EM and CM are regarded as   
the same illness [144], pathophysiology CM is not fully understood. 
However, several predisposing factors have recognized, such as 
medication overuse, insufficient migraine prophylactic treatment, low 
socioeconomic status, stressful events, and more [145]. 

Sleep and migraine 

The complex relationships between sleep and migraine point to 
commonly shared pathophysiology. Although this topic has received 
significantly more attention over the last two decades, there are still 
many knowledge gaps. Throughout our review, we have identified 
several areas in need of further research. Furthermore, our clinical  
and research approaches should be tailored to view sleep problems as 
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intimately linked to migraine pathophysiology, in at least a subset of  
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patients. Treatment of sleep problems in patients with migraines may 
result in an overall decrease in headache days and disability [146]. 

Likewise to migraine, depression, and anxiety have been associated 
with increased permeability of the gut. A change to improve the gut 
microbiota with a reduction of inflammatory activity can have a 
positive effect on relation gut-brain function. However, either the 
probiotics may have a beneficial effect on the severity and frequency of 
migraine there is necessary to make large-scale randomized, placebo- 
controlled studies in the future to recognize the clinical efficacy and 
safety of probiotics in migraine headache [147]. 

Psychiatric comorbidities 

Psychiatric comorbidities have a higher prevalence in subjects with 
migraine than in the general population, the more common disturbers 
associates are Depression 41–47%, Anxiety 51–58; Post-traumatic stress 
disorder 9–43%, Childhood trauma 58%, Abuse during adulthood 33%; 
the hypotheses that can explain this relationship between psychiatric 
comorbidities can be related with neurotransmission but are not 
entirely understood. Nevertheless, psychiatric comorbidities seem to 
increase the development of chronic migraine; those comorbidities 
decreased the quality of life of migrainous patients, and complicate 
their treatment. It is important to screen patients with a migraine for 
these comorbidities. It is necessary to make more studies to explain 
address this intersection from a therapeutic point of view, given the 
clinical, functional, and cost implications [148]. 

Neuropsychological tests can show that migraine attacks are 
associated with poor cognitive performance compared with control and 
headache-free periods, consistent with cognitive difficulties subjectively 
reported during attacks. Most population-based studies have been 
showing similar cognitive capacity in migraineurs and control subjects 
in the interictal period. Longitudinal studies do not have evidence of 
increased risk for cognitive decline in migraine patients. However, 
there are some studies about worse cognitive performance in chronic 
migraine patients. Further studies are necessary to establish if it is real 
and exist cognitive impairment in subjects with migraine and other 
primary headache disorders [149]. 

Conclusions 

In some topics, the controversy remains somewhat and pivots 
around two issues: initiation and the origin of the pain. As knowledge 
increases, it has been possible to establish molecular and clinical 
genetic physiopathological linkages. It is widely accepted that migraine 
involves activation and sensitization of trigeminovascular pathways, as 
well as the brain stem and diencephalic nuclei. The migraine may be 
considered as altered excitability state of the brain. 

Even though the term excitability is frequently used to characterize 
neurons responses in migraine, a state of hypersynchrony would 
explain better the clinical symptoms of migraine. 

Premonitory y postdrome symptoms in migraines are similar; 
premonitory symptoms can start days before the headache; postdrome 
symptoms lasting days after of headache stops. Both are neurological 
symptoms non-nociceptive of brain origin. 

Familial hemiplegic migraine (FHM) is a rare migraine form from 
the geneticorigin; in most of the most cases, multiple genes have been 
associated with migraine; identification of a genetic predisposition 
would provide strong support about that migraine has a substantial 
genetic component. 
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