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these mixed post-mortem findings, including the “Lewy body variant of 
AD” [8], but current nomenclature has become more refined. Indeed, 
the first consensus meeting to define the clinical syndrome of Dementia 
with Lewy Bodies (DLB) to predict the presence of neocortical SYN 
pathology in dementia patients occurred in 1995 [9] and has been further 
revised [10,11] to improve ante-mortem diagnostic accuracy. DLB is 
characterized by bradykinesia and other parkinsonian features, well-
formed visual hallucinations, periodic fluctuations in cognition and RBD. 
These clinical features are often shared with PDD, with the distinction 
that the cognitive impairment in DLB starts within a year of the onset 
of motor symptoms-the arbitrary “one-year rule” as delineated by the 
third consensus on the definition of DLB [10]. This clinical distinction 
of PDD and DLB is currently a matter of debate, [1,12] because there is 
no pathologic substrate found at autopsy that can reliably differentiate 
these clinically defined disorders [13,14] (Figure 2). Moreover, both PDD 
and DLB share genetic risk [15-18] and preclinical/prodromal features 
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The Clinicopathological Spectrum of LBD and Overlap 
with AD

Parkinson’s Disease (PD) is a complex, progressive clinicopathological 
entity, clinically characterized by the variable presence of core extra-
pyramidal symptoms that include bradykinesia, tremor, postural 
instability and rigidity [1]. Non-motor features of the disease are 
increasingly recognized and include autonomic failure, constipation, 
cognitive impairment, ansomia, Rapid eye-movement sleep Behavior 
Disorder (RBD) the latter two features usually occurring during the 
preclinical or prodromal stage of disease evolution as biomarkers and 
predictors of later onset of clinical symptoms [2]. Cognitive impairment 
and dementia in PD are highly common complications of late stage 
disease [3,4] and correspond to poor prognosis [5] and more profound 
patient disability [6]. The natural history of PD is notable for its marked 
variability among patients in the mixture of symptoms and the rate of 
progression from estimated time of onset to death (average duration of 
illness15 years).

The pathological hallmark of PD is the presence of pathologically 
misfolded alpha-synuclein (SYN) protein in the form of Lewy Bodies 
(LBs) and Lewy Neurites (LNs) in neurons of the Central Nervous 
System (CNS) (Figure 1). Modern immunohistochemical staining of 
SYN pathology has shown SYN pathology, not only in PD patients but 
also in the cortex of a large number of patients with clinically diagnosed 
AD at autopsy [7]. Historically several terms have been used to describe 
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 Abstract
Parkinson’s Disease (PD) and the closely related Dementia with Lewy Bodies (DLB) are due to the accumulation 

of pathogenic alpha-synuclein protein in brain cells manifest by heterogeneous motor and non-motor symptoms, 
including cognitive impairment and dementia. The majority of patients with Parkinson’s Disease develop Dementia 
(PDD) in late stages of the disease and have widespread neocortical distribution of alpha-synuclein pathology at 
autopsy, compared with PD without dementia, in which neocortical synuclein pathology is less prevalent. These 
three entities PD, DLB and PDD comprise a clinical spectrum, collectively known as Lewy Body Disorders (LBD). 
Recent investigations into the neuropathological basis of LBD have demonstrated that while synuclein pathology is 
the defining feature of these disorders, it is often accompanied by other age-related neurodegenerative pathologies. 
In particular, amyloid plaque and tau tangle pathology characteristic of Alzheimer’s Disease (AD) (~50% of all LBD 
patients have sufficient pathology at autopsy for a secondary neuropathologic diagnosis of AD), appear to contribute 
to cognitive impairment in LBD, and the combination is associated with a shorter interval between onset of motor 
symptoms and development of dementia and a shorter life span. Further, the co-occurrence of neocortical alpha-
synuclein, tau and amyloid pathologies found at end-stage disease suggests a potential synergistic interaction of 
these individual pathologies in humans during life, mirroring experimental observations in animal and cell model 
systems that show how pathogenic species of synuclein fibrils can promote trans-synaptic spread of both tauopathy 
and synucleinopathy with strain-like properties. Newer post-mortem studies using digital methods to measure 
pathologic burden have highlighted distinct neocortical patterns of areas with relative higher density of tau pathology 
in LBD compared to AD that support these model data. The emerging field of cerebrospinal fluid and molecular 
imaging biomarkers of synuclein, amyloid and tau pathologies in LBD is contributing to a greater understanding 
of how the different pathologies evolve and interact to produce clinical heterogeneity in LBD. Future work to 
elucidate biologically meaningful clinical subgroups of synucleinopathy and its co-pathology must focus on the full 
clinicopathological spectrum of LBD and use validated biomarkers, when available, to design clinical trials based 
on the precise selection of homogeneous patient subgroups to maximize statistical power for detecting the impact 
of treatment. 
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(e.g. anosmia, RBD) [19-21]. However, the DLB clinical syndrome is 
currently considered a distinct entity by many experts because it is useful 
for prognosis in patient care and in educating the lay public that it has 
features that differentiate it from clinical AD. 

Co-occurring AD associated amyloid-beta (Aβ) plaques and tau 
Neurofibrillary Tangles (NFTs) occur in 30-40% of patients with PD 
(Figure 1) and may contribute to clinical features of disease [22,23]  
Particularly Development of Dementia (PDD). Interestingly, PDD 
patients with greater levels of AD co-pathology may have a clinical 
phenotype that in some respects is more similar to DLB, with shorter 
time to dementia [13,22-24] and less prominent rest-tremor [25,26]. 

Thus, PD/PDD and DLB appear to exist on a clinicopathological 
spectrum of SYN pathology with varying degrees of AD co-pathology; 
hence the collective and more inclusive term Lewy body disorders 
(LBD) [8]. 

Attempts to cluster or sub-type PD based on clinical symptoms [27] 
may be helpful for prognosis but the underlying biological contributions 
to clinical heterogeneity of PD are currently unclear. Few studies 
include the full spectrum of LBD, since this often requires coordination 
of multimodal data collection across movement disorders and cognitive 
centers, where PD and DLB patients are often evaluated, respectively 
[22]. The current lack of a reliable method to detect and track SYN 
pathology in vivo makes detailed post-mortem clinicopathological 
work critical to elucidate the pathological substrates that contribute to 
cognitive impairment and clinical heterogeneity in LBD Here we review 
the recent literature on clinicopathological associations of dementia 
in LBD and include studies that have used in vivo biomarkers of AD 
pathology. The parkinsonian syndrome of multiple system atrophy, a 
related synculeinopathy, has a different neuropathological substrate of 
alpha-synuclein pathology primarily in oligodendrocytes [28] and is 
beyond the scope of this review. 

Alpha-Synuclein in Disease Pathogenesis of LBD
In 1997 two near-simultaneous reports found pathogenic mutations 

in the alpha synuclein (SNCA) gene encoding SYN protein in patients 
with hereditary PD [29] and pathogenic SYN protein as the primary 
constituent of LB/LNs in both PD and DLB [30]. These two important 
studies demonstrated that abnormal aggregation of SYN protein in 
the CNS is central to the disease process in PD and DLB (i.e. LBD). 
Landmark work by Braak and colleagues [31] defined a non-random 
distribution of SYN pathology in a large cohort of cross-sectional 
autopsied patients with clinically defined PD1 (but not DLB) to develop 
a staging system of hypothesized disease spread within an individual. 
This model of spread of pathology from caudal brainstem regions in the 
medulla and the dopaminergic neurons of the substantia nigra of the 
midbrain to rostral subcortical and cortical regions largely maps to the 
clinical progression of disease in most patients from earliest symptoms 
to late stage dementia. Some deviations from this staging system have 
been described [32-35], including reports of the presence of post-
mortem SYN pathology in some patients who died without evidence 
of clinical dementia or parkinsonism [36], which could suggest SYN 
pathology does not always contribute to neurodegeneration. Most 
of these patients with asymptomatic SYN pathology at autopsy (i.e. 
Incidental Lewy Body Disease or ILBD) have mild deposits in lower 
brainstem regions and are thought to be in a prodromal or preclinical 
stage of PD [37]. More direct evidence for pathogenicity of SYN 
pathology has been described recently in animal [38,39] and cell 
[40-42] model systems that have shown that pathogenic “seeds” of 
misfolded SYN pathology may induce native SYN misfolding and a 
cell to cell, prion-like propagation of SYN pathology between neurons. 
Strikingly, intracerebral injections of recombinant SYN protein alone 
can cause a motor phenotype and reduced survival in both transgenic 
[39] and “wild-type” [38] murine models associated with a time- and 
dose-dependent accumulation of SYN pathology in anatomically 
connected regions of the brain to recapitulate human disease. These 
findings of trans-neuronal spread of SYN pathology are reminiscent of 
the histopathological staging model of PD by Braak and colleagues [31] 
and have been replicated in animal models [43-45]. Further, several 
PD patients who received experimental fetal tissue grafts into the basal 
ganglia were found to have low levels of SYN pathology in grafted tissue 
at autopsy several years after implantation [46]. It is unclear if these 

Figure 1: Mixed pathology in LBD. Photomicrographs depict neocortical 
pathology in LBD with “pure LBD” (TOP; SYN-AD) compared to LBD with AD 
co-pathology (BOTTOM; SYN+AD) with higher overall alpha-synuclein Lewy 
bodies and Lewy neurites in patients with SYN+AD. Scale bar= 100 µm. 

Figure 2: Clinicopathologic Spectrum of LBD. Scatterplot depicts individual 
patient data from a large LBD autopsy series (reproduced from Irwin et al, 
The Lancet Neurology 2017) showing the time interval from onset of motor 
symptoms to dementia in years defining the distinction of PDD and DLB (i.e. 
1-year rule dashed line) compared to level of AD neuropathology found at 
autopsy. The arbitrary boundary between PDD and DLB does not differentiate 
patients with or without AD co-pathology. This clinicopathologic spectrum of 
synucleinopathy includes varying amounts of AD co-pathology which may 
influence clinical phenomenology as well as the response to future, more 
effectively targeted therapies.
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aggregations of SYN pathology are spread from host PD brain tissue or 
developed independently due to other disease-related factors. 

DLB staging is thought to follow a pattern of caudal-rostral spread 
of SYN pathology similar to the stages Braak described in PD from 
the brainstem to limbic and neocortical areas in most patients [11], 
However, the findings of pathologic criteria for LBD at post mortem 
in some patients with dementia but no clinical parkinsonism [13] or 
striatal dopaminergic deficit on in vivo dopamine transporter imaging 
[47], could suggest that SYN pathology may have a different epicenter 
and pattern of spread during life in some DLB patients. Future work 
with more quantitative approaches to pathology staging and eventual in 
vivo markers of SYN pathology may further resolve these discrepancies. 

Despite the tantalizing evidence of a prion-like mechanism of 
disease in PD and DLB, there is a sharp distinction between prion 
disease (i.e. caused by a proteinaceous infectious particle) [48] and 
SYN pathology, as there is currently no evidence that SYN pathology 
is infectious or can transmit between humans or animals, even in the 
setting of cadaver-derived human growth hormone recipients from 
pituitary samples which likely often contained SYN pathology as 
opposed to the rare contamination of prion protein which caused an 
epidemic of Cruetzfield-Jacob disease [49]. 

Observations of PD-like clinical symptoms and SYN pathology in 
adult patients with the multisystem lysosomal storage disease Gaucher’s 
disease with homozygous mutations in the Glucocerebrosidase 
A1 (GBA1) gene, led to the discovery of increased frequency of 
heterozygous GBA1 mutation carriers in LBD patients compared 
to the general population [50]. GBA1 mutations are associated with 
more rapidly progressive clinical parkinsonism [15,16], earlier onset 
of cognitive impairment [51,52] and advanced SYN pathology in the 
absence of AD co-pathology [13,17,53]. These findings have led to the 
consideration that autophagy (a lysosomal mechanism for disposing 
of altered proteins) and other mechanisms of protein homeostasis 
contribute to disease pathogenesis and an imperative to focus on GBA1 
mutation carriers as an important biological subgroup of LBD. 

Ongoing work to elucidate mechanisms of SYN pathology 
propagation and other potential downstream mechanisms of disease 
such as oxidative stress, synaptic dysfunction, disruption of axonal 
transport and inhibition of protein degradation pathways are vital to 
the development of disease-modifying therapies. Equally important for 
the success of clinical trials for these potential therapies is the ability to 
reliably detect biologically meaningful subgroups of LBD patients for 
homogenous patient recruitment when testing experimental therapies.

Clinicopathological Correlates of Dementia in PD 
(PDD)

Cognitive impairment and dementia are common in PD and will 
develop in the majority of patients usually late in the course of the 
disease [3,4] but with significant heterogeneity in the timing of onset 
[13,22,23] and the rate of progression. Roughly [24] percent of PD 
patients are found to have mild-cognitive impairment at diagnosis [54] 
and are at high risk of developing later incipient dementia [55]. 

The pathologic substrates linked to dementia in PD are diverse and 
include a range of histopathological findings. including the distribution 
of Lewy SYN pathology in the neocortex [56-58], subcortical cholinergic 
loss [14,59], Cerebrovascular Disease (CVD) [60], Argyrophilic 
Grain Disease (AGD) [61], TAR DNA-binding protein 43 (TDP-43) 
inclusions in limbic structures [62] and hippocampal sclerosis of aging 
(HpScl) [63]. With standardized neuropathological assessments for AD 

and related disorders [64,65] there is increasing recognition of mixed 
or multiple pathologies in LBD and other neurodegenerative diseases, 
along with the non-demented aging spectrum.

Large autopsy-series of PD find that the distribution of SYN 
pathology in a neocortical pattern is a strong correlate of dementia 
during life [23,56-58,66]. We previously performed a deep pathological 
phenotyping of a large cohort of PD patients (n=140), who died with 
or without dementia and included systematic evaluation of SYN, Tau 
NFTS, Aβ plaque, TDP-43, CVD and HpScl, as well as genotyping 
for Apolipoprotein E (APOE) and MAPT tau haplotype [23]. We 
found that each of these pathologies was associated with dementia 
independently. However, using a multivariate approach, we found the 
strongest correlate with dementia was the neocortical burden of SYN 
pathology, suggesting that propagation of caudal to rostral spread 
of SYN pathology [31] as proposed by Braak, is a main driver of the 
emergence of dementia in PD. Thus, patients with PDD at end-stage 
disease have indistinguishable pattern of wide-spread SYN pathology 
compared to DLB. We also found an association of the APOE Ɛ4 
genotype with dementia that was independent of Aβ plaque and tau NFT 
pathology. This suggests that the APOE genotype may confer risk for 
SYN pathology in a manner distinct from AD pathology. APOE Ɛ4 has 
been found in a greater frequency in both patients with “pure” (no co-
pathology) LBD and those with LBD and AD co-pathology compared 
to the general population [18], and some post-mortem studies find 
an independent association of APOE Ɛ4 with SYN pathology [58,67], 
which further reinforces a link between this common risk variant and 
LBD.

AD Co-Pathology across the Spectrum of LBD
Several other large-scale studies of autopsied PD brains have 

found a strong influence of co-existent AD pathology on cognitive 
status [4,23,24,60,66,68-70]. One study found that the combination 
of SYN with Aβ plaque and tau NFT pathology is the strongest 
correlate with dementia in PD [66], and another, using ante-mortem 
neuropsychological data to define cognitive status in PD70, similarly 
found a combination of SYN and AD co-pathology to be the most 
influential. We and others find that high levels of AD co-pathology in 
PD are nearly universally associated with PDD (i.e.<10% of PD without 
dementia has significant co-morbid AD at autopsy23) and also are 
associated with higher cortical SYN compared to PD patients without 
significant AD co-pathology [13,23,57,58,60,70,71]. Moreover, patients 
with PDD who have significant AD co-pathology tend to be older, have 
a shorter time interval to develop dementia after onset of parkinsonian 
motor symptoms and a shorter life span [23,68]. 

The Sydney longitudinal, multicenter study of PD followed a large 
cohort of patients with PD prospectively and found a similar subgroup 
of older PD patients with more aggressive disease [4,24,69]. These data 
suggest that age-related factors, including cerebrovascular disease and 
AD co-pathology, may increase the risk of earlier onset of dementia 
in the course of disease that more closely approximates DLB on the 
spectrum of LBD vs PD (Figure 2). Indeed, the majority of DLB patients 
(>70%) in a large, multi-center cohort were found to have a medium to 
high-level of AD neuropathologic change at autopsy [13]. A minority 
of those patients with DLB who had a pattern of “pure” SYN pathology 
(i.e. no Alzheimer co-pathology) were carriers of the GBA1 mutation 
or had other co-pathologies, including CVD, indicating that while AD 
co-pathology influences the DLB phenotype, it does not do so in every 
case. 

In our study of patients with LBD spectrum disease (PDD/DLB), 
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we found that tau NFT pathology is the strongest correlate of reduced 
survival and earlier time to dementia [13], while others find AB plaque 
or SYN pathology to be a strong correlate for the timing of dementia58 
and survival [72]. Since all three pathologies (i.e. Tau, Aβ and SYN) 
are correlated in the neocortex in LBD [13,25], sample size and 
varying methodologies used to detect and quantify these pathologies 
could contribute to discrepancies in outcome. These limitations 
notwithstanding, AD co-pathology and associated neocortical spread 
of SYN appear to confer an overall worse prognosis in LBD. 

Few data exists, relating post-mortem pathology to specific ante-
mortem clinical features or cognitive profiles. Cognitive and motor 
features of LBD are heterogenous, [10,73,74] and there is currently no 
clear clinical phenotype to distinguish AD co-pathology in LBD. Data-
driven clusters of PD patients have shown that a clinical subgroup with 
less prominent rest tremor and more prominent postural instability is 
linked to higher Aβ and SYN pathology in the neocortex [26] and to 
clinical biomarkers of AD [27]. Few autopsy-confirmed studies with 
ante-mortem quantitative neuropsychological testing data exist to 
test the cognitive domains that are impaired in LBD with and without 
AD co-pathology [25,75-77]. Some studies suggest that temporal-
lobe mediated naming tasks may be worse in LBD with mixed AD 
co-pathology compared to pure LBD [25,76,77]. We find increasing 
tau pathology is a strong correlate of worsening cognitive scores in 
LBD patients with dementia, [25] and others find that a combination 
of pathology in the prefrontal cortex and temporal lobe is a strong 
correlate of cognitive decline [70]. 

Using digital methods to measure the burden of pathology 
parametrically, we have found similar levels of Aβ pathology but much 
lower levels of tau pathology in LBD with AD co-pathology than seen 
in autopsy-confirmed clinical AD, but the tau pathology has greater 
concentration in the temporal lobe [25]. Further, we have also found 
that overall SYN pathology in LBD with AD co-pathology is highest 
in the frontal and temporal lobes. This novel digital investigative 
methodology suggests that tau may accumulate in a manner that is 
distinct from AD in LBD and share a locus of pathology with SYN in 
the temporal lobe. 

It is impossible to deduce the timing or mechanism for these 
observations from human post-mortem histology alone, but several 
strands of evidence suggest a link between tau and SYN pathology in 
LBD. First, the Contorsi kindred of autosomal dominant PD patients 
with the Ala53Thr pathogenic mutation in the SNCA gene was found 
to have high levels of tau pathology in addition to SYN [78]. Genetic 
variation in the H1 haplotype of the tau gene MAPT has been linked 
to increased risk for PD [79] and DLB [80], as well as the accumulation 
of cortical SYN pathology [81] and the risk of dementia in PD in some 
studies [82-84], but not others [23]. An in vitro cell model [85,86] 
and transgenic SYN murine models [86] suggest that tau and SYN 
pathology can accelerate co-polymerization of tau. More recently, 
novel experiments in a cell model have demonstrated two distinct 
strains of recombinant SYN fibril preparations, including one strain 
that can induce both tau and SYN pathology [42]. Moreover, the use of 
specific novel monoclonal antibodies to study these distinct strains of 
pathogenic SYN has detected unique patterns of pathology in human 
LBD samples [87]. This growing body of work provides compelling 
evidence to suggest synergy between tau and SYN pathology.

Some evidence suggests that increased AD co-pathology in LBD 
may mask the usual cognitive features in DLB of visual hallucinations 
and cognitive fluctuations [88,89]. Indeed, the clinical criteria for DLB 
are specific but less sensitive to detect neocortical SYN Lewy pathology 

at autopsy [90]. It is likely that the majority of patients with an AD 
clinical amnestic syndrome that have widespread neocortical SYN 
pathology at autopsy may represent a “limbic predominant” pattern 
originating from the amygdala [35], as brains from these patients have 
less subcortical and brainstem SYN pathology and extracranial SYN 
pathology in the peripheral nervous system [71] typical of LBD [91]. 
Roughly 50% of patients with sporadic and hereditary AD have SYN 
co-pathology in the amygdala and other limbic regions at autopsy 
[7,92]. Further, brains from patients with clinical AD and co-existent 
SYN pathology have higher hippocampal tau than LBD [93], suggesting 
these patients are biologically distinct from clinical LBD (i.e. PD, PDD, 
DLB). It is also possible that a subset of clinical AD patients with 
neocortical SYN pathology reported at autopsy could be misdiagnosed 
during life, since clinical diagnostic accuracy for DLB based on the 
one year rule is currently less than optimal [94]. Thus, the pathological 
spectrum of SYN pathology also includes a large proportion of AD 
patients, making clinical distinction of AD patients with and without 
SYN pathology challenging. Recent revised clinical criteria for DLB10 
await validation and might improve the ante-mortem detection of SYN 
pathology in dementia of any type. 

AD Biomarker Studies in LBD
In vivo biomarkers to detect signatures of Aβ plaque and tau tangle 

pathology in AD have been studied in LBD and provide converging 
evidence to the post-mortem data discussed above. Assays for 
pre-mortem cerebrospinal fluid (CSF) measurements of total-and 
phosphorylated forms of tau (t-tau, p-tau) and Aβ1-42 show direct 
associations with post-mortem tau NFT and Aβ plaque pathology in AD 
[95] where low Aβ1-42 and high t-tau and p-tau represent a signature 
of AD pathology. This pattern of CSF analytes can robustly differentiate 
between AD from non-demented controls [96] and predicts clinical 
progression to a diagnosis of AD in patients with Mild Cognitive 
Impairment (MCI) [97]. In PD, one prospective study found that low 
levels of CSF Aβ1-42 predict cognitive decline, [98] and cross-sectional 
studies have found that AD biomarkers in CSF are associated with 
cognitive impairment [99-102]. Similarly, in DLB, biomarkers for AD 
in CSF show association with poor prognostic clinical markers such as 
falls, institutionalization and shortened life span [103]. Across the LBD 
spectrum, the CSF biomarker signature of AD is found increasingly 
more common between groups of PD, PDD and DLB (reviewed in 22), 
which resemble frequencies of AD co-pathology seen in large autopsy 
studies (i.e. <10% PD, 40% PDD, >70% DLB) [13,22,23]. In early clinical 
PD, levels of t-tau and p-tau in CSF are lower than in control patients and 
are highly correlated with CSF measurements of total-alpha-synuclein 
[104], further suggesting that the accumulation of tau pathology and 
pathogenic species released into CSF may be distinct in LBD compared 
to AD and normal aging. Despite these differences in low t-tau/p-tau 
levels in early PD, cross-sectional samples of more advanced PD/PDD 
and DLB have found wide ranges of CSF AD biomarker values, with 
some overlap of individual data points with both controls and AD 
patients [105]. There is little autopsy confirmed data on the validity of 
AD CSF biomarkers in LBD. These few studies that do exist suggest 
that AD co-pathology may influence CSF biomarker level associated 
with autopsy proven AD [106]. We found a direct association with 
post-mortem measurement of CSF t-tau and Aβ with post-mortem 
severity of Aβ and tau pathology, as well as correlations with Aβ and the 
t-tau/Aβ ratio with SYN pathology [107]; further suggesting synergy 
between AD and SYN co-pathology. Preliminary data from this study 
suggest that clinical diagnostic accuracy to distinguish LBD with AD 
co-pathology from “pure” LBD ante-mortem using a cut-point of 
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the t-tau/Aβ ratio may be in a range suitable for clinical trials (>80% 
sensitivity/specificity) [107]. Differentiating clinical AD with and 
without SYN co-pathology using CSF biomarkers is more challenging; 
however, some studies suggest CSF alpha-synuclein levels may improve 
diagnostic accuracy [105,108]. CSF alpha-synuclein assays are not 
yet fully reliable because of the risk that leaked blood during lumbar 
puncture can contaminate CSF measurements, requiring the need to 
account for hemoglobin levels in CSF [109]. Further, there is a large 
overlap of SYN levels between control and groups of PD patients with 
PD, making interpretation of the values for individual patients difficult 
[110]. Newer assays for phosphorylated 108 or oligomeric [111,112] 
forms of CSF synuclein are in development and may be more sensitive 
to disease-specific forms of alpha-synuclein. Finally, new approaches 
using patient CSF samples to seed and induce pathological misfolding 
of recombinant or native synuclein in a similar manner to prion disease 
testing (i.e. real-time quaking inversion; RT-QuIC assays) [113,114] 
are promising for a specific marker of SYN pathology in vivo. Future 
studies to replicate and validate these assays must be done before an 
authentic SYN-specific marker can be trusted for utility as a precise tool 
for selecting accurately diagnosed patients for clinical trials of more 
effective therapies in LBD

Neuroimaging is another technique for studying AD co-pathology 
in LBD. Hippocampal atrophy on structural MRI has been linked to tau 
pathology in AD [115] and predicts cognitive impairment [116] and 
reduced survival in DLB [117]. Positron Emission Tomography (PET) 
using tracers specific to Aβ plaque pathology finds a similar frequency 
of amyloid pathology in PDD and DLB [118] but less abundantly in 
PD without dementia, in keeping with post-mortem studies described 
above [13,22,23]. Further, PET amyloid tracer binding appears to relate 
to post-mortem AB neuritic plaque burden in PD [119]. Moreover, PET 
imaging to detect tau pathology is emerging and flortaucipir, a novel 
PET tracer directed at AD tau pathology has been examined in several 
studies of LBD. These studies have generated data to suggest that tau 
pathology is overall lower in LBD than in AD, but in a distribution 
distinct from the typical localization in AD in posterior temporoparietal 
[120,121] and primary motor/sensory cortices [122]. Further, PET tau 
binding correlates in general with cognitive impairments across the 
LBD spectrum of PD, PDD and DLB [121] but in focused studies of 
patients with early PD and MCI tau binding is negligible in those with 
the least amount of altered cognition [123,124]. Moreover, PET tau 
binding was found only in those patients with PET amyloid positivity 
[122,123], which conforms with post-mortem work showing advanced 
tau pathology in LBD largely in the setting of high-level Aβ pathology 
[22]. A small subset of patients with LBD evaluated by PET using a 
combination of amyloid and tau tracers has shown tau pathology but 
not amyloid plaque formation [120,121]. This discrepancy may be due 
to the insensitivity of the PET amyloid tracer to milder, more diffuse 
plaque pathology; or it could represent further evidence that tau 
pathology alone is a distinct form of co-pathology accruing in LBD. 
Additional studies of AD pathology in LBD with emerging biomarkers 
in prospective cohorts followed to autopsy is likely to validate these 
ante-mortem imaging results. Finally, there is an urgent need for a 
reliable way to detect and track SYN pathology during life to fully solve 
the timing and progression of SYN-associated neurodegeneration in 
both “pure” LBD and LBD with AD co-pathology. 

Conclusion
The clinical components of the LBD spectrum make up a complex 

clinicopathological entity with diverse cognitive and motor features 
(Figure 2) and widespread distribution in the CNS of SYN pathology, 

often accompanied by AD co-pathology. When AD co-pathology is 
significant, it likely contributes to the clinical phenotype in ways not 
yet fully understood, including the timing of dementia and overall 
survival. Tau pathology, in particular is a strong correlate of cognitive 
impairment and survival and may be induced by the propagation of 
pathogenic strains of SYN pathology. While there is debate over the 
clinical distinction of PD and DLB, a more salient issue may be the 
ante-mortem detection and differentiation of LBD patients with AD 
co-pathology from those with “pure” SYN pathology. LBD patients 
with AD co-pathology and worse prognosis may influence clinical trial 
outcomes for both symptomatic therapies as well as emerging SYN-
targeted disease-modifying therapies; thus, it is pertinent for clinical 
trial designs in LBD to consider stratification of enrollment based on AD 
and SYN biomarker profiles. In the final analysis, significant advances 
in meaningful therapies will depend on a more precise understanding 
of how the diverse spectrum of molecular pathologies in LBD interact 
to produce clinical neurodegeneration. 
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