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Introduction
The world population grows every year and gets older as the life 

expectancy increases. Indeed, in the last century, the elderly population 
(e.g. 65 years and older) tripled from 4% to 13% and it is expected to 
double over the next three decades to reach 20% of the population in 
2025 and 33% in 2050 [1,2]. Thus, healthy aging constitutes one of the 
main social and economic challenges of the 21st century for the nations, 
especially since aging is associated to cognitive decline [3-5] that can 
lead to age-related disease such as neurodegenerative diseases. For 
example, Alzheimer’s disease (AD), the most common form of dementia, 
affects 10% of the elderly population in the US [1,6] and about 5% of the 
elderly population in Europe [7]. The loss of memory, orientation and 
processing abilities results in personal suffering, loss of autonomy and 
high costs of health care. Indeed, health care costs already account for 
between 8% and 10% of gross domestic product in developed countries 
[8]. Aging is a multifactorial process associated to molecular and cellular 
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 Abstract
Aging is associated to cognitive decline that can lead to neurodegenerative diseases and constitutes one of 

the main social and economic issues of the 21st century. The loss of memory, orientation and processing abilities 
associated with aging are involved in the loss of autonomy and in the decline in the quality of life in the elderly. Brain 
structures involved in memory such as hippocampus, cortex and striatum, are particularly affected by molecular 
and cellular damage during this period. Lipid metabolism and neurofunctional alterations, including disturbances in 
synaptic plasticity and neurogenesis, chronic low-grade inflammation and increased oxidative stress, are partly to 
be involved in age-related cognitive decline. Actually, nutrition represents a strategy of choice to prevent or delay 
these impairments since many studies have provided valuable data concerning the effect of dietary patterns and 
specific nutrients on cognitive function. From all nutrients, some of them are particularly attractive. Indeed, n-3 
polyunsaturated acids (PUFAs), especially docosahexaenoic acid (DHA), have been identified for their beneficial 
effects on cognition, notably by acting on brain plasticity (synaptic plasticity, neurogenesis), neuroinflammation and 
oxidative stress. Other nutrients such as vitamin A, vitamin E, vitamin D, polyphenols as well as pre- and probiotics 
have aroused a growing interest in decreasing cognitive disorders. As nutrition has to be taken as a whole, we 
first described the effects of the Mediterranean diet which constitutes the most complete association of nutrients 
and (DHA from fish, vitamins and polyphenols from fruits and vegetables) represents a global vision of nutrition, 
then we focused on the interest of combining DHA and micronutrients contained in this diet as well as pre- and 
probiotics, to prevent age-related cognitive decline and reported the synergistic effects of these associations. Finally, 
we completed with benefits from dairy products that increase DHA incorporation. 
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damage over time including retraction of synapses and loss of cellular 
components in the hippocampus, cortex and striatum, the critical brain 
regions for memory [4]. The mechanisms involved are not completely 
understood but include lipid metabolism as well as neurofunctional 
alterations, including disturbances in synaptic plasticity and 
neurogenesis, increased oxidative stress and activation of inflammatory 
signaling pathways which are linked to the diminution of cognitive 
performance and ultimately, to the development of neurodegenerative 
diseases [4,9]. 

Strategies to promote healthy brain aging including optimal 
cognitive function with a good quality of life are encouraged. 
Furthermore, lifestyle, especially diet and nutrition, may have a direct 
impact to prevent age-related cognitive decline by affecting multiple 
brain processes since many clinical and preclinical studies have 
provided valuable data concerning the effect of dietary patterns and/or 
specific nutrients on cognitive function [10-12]. Indeed, recent studies 
suggest that nutrition can slow the progression of age-related cognitive 
decline [4,12,13]. For example, n-3 polyunsaturated fatty acids (PUFAs) 
and especially docosahexaenoic acid (DHA), highly concentrated in 
the brain, have been largely studied. During aging, a large panel of 
studies shows a DHA deficit in brain membranes in humans and in 
rodents [14-18] due to impairments in lipid metabolism. Indeed, 
aging induces a reduction in the bioavailability and in the synthesis 
of fatty acids and phospholipids. Hence, n-3 long chain PUFAs (LC-
PUFAs) and particularly DHA have to be provided to the elderly, 
especially since aging is also characterized by a dysregulation in the 
cytokine homeostasis leading to a chronic pro-inflammatory state in 
the brain (“a low-grade inflammation”) [19] and since n-3 LC-PUFAs 
have anti-inflammatory properties [20-24]. However, results from 
n-3 PUFAs supplementation studies are conflicting either because of 
the insufficient anti-inflammatory properties of a single nutrient [25] 
or because of the high oxidative susceptibility of DHA, requiring the 
addition of antioxidants. Indeed, during aging, oxidative processes are 
higher [9], leading to a possible increase in DHA oxidation. Then adding 
antioxidants may be necessary for the elderly when supplying DHA, this 
population having particular nutritional requirements in term of key 
nutrients [25]. Hence, combining DHA and different micronutrients, 
antioxidants/polyphenols for example, represents a good strategy 
to enhance cognitive functions in the elderly [4,26]. Moreover, since 
the anti-inflammatory properties of a single nutrient at relevant 
concentrations are usually insufficient to achieve a therapeutic effect, 
combining nutrients avoids the use of high concentration of a single 
nutrient [26].In addition to the beneficial effect of DHA on cognition, 

there is a growing interest in vitamin A, vitamin D and vitamin E as well 
as phytonutrients found in fruits and vegetables such as polyphenols in 
decreasing cognitive decline [10,27-29]. An alternative strategy will be 
to increase the bioavailability of those nutrients, in particular of DHA. 
Recently, studies have demonstrated that probiotics and dairy products 
increase brain DHA content, possibly affecting cognitive decline [30-
34].

Hence, in this review, we focused on the interest of combining 
DHA and other micronutrients (vitamin A, D, E, polyphenols, pre- or 
probiotics) to prevent age-related cognitive decline. We first examined 
the Mediterranean diet that is rich in n-3 PUFA from fish and whole-
grain cereals, in vitamins from fruits and vegetables and in polyphenols 
from olive oil because this diet has been found to be protective [1]. 
Then we focused on the benefits of DHA alone or with vitamins or 
polyphenols as antioxidants. Finally, we exposed the interest of adding 
pre- or probiotics to DHA or to consume dairy products to increase 
DHA bioavailability.

Brain Aging and Cognitive Decline
Memory alterations during aging

Brain aging is associated with different morphological and 
neurochemical changes leading to the development of memory 
deficits such as mild cognitive impairment (MCI) or AD. Studies from 
Salthouse show that notable age-related cognitive decline occurs in 
healthy individuals from the late 20 years old and continues throughout 
the adult lifespan (for review [35]). Normal aging is characterized 
by a decrease in cognitive performance which is defined by non-
pathological memory alterations with a significant inter individual 
variability [36]. Hippocampal dependent memory has been shown 
to be strongly affected by age in humans [37,38] as well as in rodents 
[39,40]. However, aging does not impact equally all forms of memory 
(Figure 1). 

It has been shown that working and episodic memories start 
declining from youth throughout the lifespan [41]. Results of 
longitudinal studies taking into account methodological biases related 
to “test-retest” suggest that both types of memory would undergo 
accelerated decline after 60 years [42]. Episodic memory is considered 
to be the form of long-term memory with the highest degree of age-
related decline, but conversely, knowledge (semantic memory) seems 
to be preserved or even improved [41]. 

Experimental data have shown that age-related memory deficits, 

Figure 1: Classification of memory-system. Memory is divided in long-term and short-term memory. Long-term memory can be separated in tow classes: the declarative 
memory, characterized by the capacity for conscious recollection, and the nondeclarative memory, which are the unconscious learning and memory abilities. Declarative 
memory is composed of the episodic memory, for autobiographical events, and the semantic memory, which consists of facts and general knowledge. Nondeclarative 
memory includes procedural learning and cognitive skills and habits, priming, simple conditioning, and habituation and sensitization. Short-term memory consists of 
working memory. During aging, the form of memory the most altered is the episodic memory.
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including spatial learning deficits, are similar to those induced by 
hippocampal lesions [43]. In this context, many studies have identified 
age-related deficits in various tasks that evaluate spatial or working 
memory in rodents compared to their younger counterparts [44,45]. 
Furthermore, using a paradigm modeling human declarative memory, 
some authors have shown that older animals exhibit relational and 
working memory deficits which were associated with alterations in the 
activity of the hippocampus [46].

The link between the neurobiological alterations in the 
hippocampus and the genesis of memory deficits observed during 
aging is also accepted [5]. Indeed, changes in hippocampus occurring 
during aging involve disturbances in signaling pathways and alterations 
in brain plasticity which result in deficits in learning and memory. 
Cognitive impairments occurring during aging could be explained in 
part by neurofunctional alterations, chronic low grade inflammation 
and oxidative stress.

Lipid metabolism alterations during aging

The brain is highly enriched in LC-PUFAs that are essential fatty 
acids needed to be provided by the diet since they are poorly synthesized 
in mammals [47]. PUFAs are divided into two main families, the n-6 
PUFAs (omega 6) and the n-3 PUFAs (omega 3). Linoleic acid (LA; 18:2 
n-6) and α-linolenic acid (ALA; 18:3 n-3) are, respectively, the dietary-
essential precursors of the LC-PUFAs arachidonic acid (AA; 20:4 
n-6) and eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic 
acid (DHA; 22:6 n-3) [48]. The synthesis of LC-PUFAs from their 
precursor requires the action of Δ6 and Δ5 desaturases and elongases 
as well as β-oxidation for the last step in DHA formation [49]. AA 
and DHA are largely esterified into phospholipids of cell membrane 
(DHA: 13-22% and AA: 5-11%) in the sn-2 position [47]. The main 
phospholipids of brain cell membrane are phosphatidylcholine 
(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), 
phosphatidylinositol, and plasmalogens which have specific PUFA 
profiles. Indeed, DHA for example, is mainly esterified in PE and PS in 
the brain [50].

During aging, changes in membrane phospholipid class 
composition as well as reduced brain levels of LC-PUFAs are observed, 
although all brain structures are not affected in the same way [48,51]. 
Indeed, several studies have reported the reduction with aging of DHA 
level in human brain [50,52] and rats [53,54]. In animals, a progressive 
decrease in cortical and hippocampal contents of PE and PS has been 
observed in aged rats [15,54,55]. Other studies performed in aged 
rodents have highlighted a reduction in DHA content in the whole 
brain [16,56] or only in certain brain areas such as hippocampus, 
cortex, hypothalamus as well as the cerebellum [17-19,55]. However, 
these data are controversial since further studies have shown in cortex 
of aged mice an increased level of AA and DHA in PC and PE which 
could be due to a decreased consumption of AA and DHA by the brain 
[57,58]. 

Aging is associated with the decrease of Δ6 desaturase activity 
in the liver and the brain which lead to the reduced efficiency of the 
conversion of the precursors, ALA to DHA [52]. Furthermore, enzymes 
involved in phospholipid synthesis are also impaired, thus hindering the 
incorporation of PUFAs into the membranes [59]. In addition, several 
studies in both humans and animals [60,61] have shown disturbances 
in the intestinal absorption of essential fatty acids suggesting changes 
in the bioavailability of n-3 PUFAs. Moreover, PUFAs are highly 
susceptible to free radical attack. Indeed, oxidative damage to lipids can 
occur through their peroxidation leading to the formation of reactive 

aldehydes such as malonaldehyde (MDA), 4-hydroxy-2-nonenal (4-
HNE) or 4-hydroxy-2-hexenal (4-HHE). Increased levels of MDA and 
4-HNE have been demonstrated in aged brain of humans and rodents 
[62,63]. Thus, the decrease in the activity of conversion enzymes 
inducing a reduction in the bioavailability of n-3 LC-PUFAs in the liver 
and in the synthesis in situ, associated with lipid peroxidation, can lead 
finally to disturbances in DHA metabolism and then to the development 
of cognitive decline. Several studies have also shown variations with age 
in genes involved in the biosynthesis and metabolism of PUFAs. Indeed, 
single nucleotide polymorphisms (SNPs) in desaturase genes FADS1 
(Δ5 desaturase), FADS2 (Δ6 desaturase) as well as ELOVL2 (elongase 
2) are linked to higher ALA and lower EPA plasma phospholipid levels 
with age, which suggest different rates of conversion [64]. 

All together, these data demonstrate the importance of the dietary 
intake of DHA for the elderly since changes in lipid metabolism have 
been linked to age-related cognitive decline.

Observational studies in elderly linked the age-related decrease in 
DHA blood concentration with cognitive disorders. Indeed, it has been 
shown in cohorts of elderly that the erythrocyte membrane content 
in n-3 PUFAs as well as their consumption are inversely correlated 
with age-related cognitive decline [65,66]. Interventional studies with 
a daily use of fish-oil supplements have shown increased levels of n-3 
PUFAs, especially DHA, in erythrocytes which is associated with better 
cognitive performance in older age [67]. Another study performed 
by Barberger-Gateau [68] in elderly highlights a negative correlation 
between food consumption rich in n-3 PUFAs and cognitive decline. 
Similar relationships were found in the Framingham Offsprings 
Study with a positive correlation between serum DHA concentration 
and cognitive abilities. Another study performed in Japanese older 
individuals has shown a link between low DHA levels in serum and a 
higher risk of cognitive decline [69]. 

Modifications in lipid composition are suggested to have 
consequences for cellular functions of the central nervous system 
(CNS) [50]. This is supported by various animal studies demonstrating 
that a low-DHA diet for one or more generations is associated with 
deficits in cognitive function in rats [53,70]. In addition, data from our 
lab have shown that aged mice fed an unbalanced diet in n-3 PUFA 
alters synaptic plasticity, neuroinflammation as well as memory [57,71]. 
Furthermore, the decrease in brain DHA content sensitizes the brain 
to inflammatory stimuli [72], resulting in damage to neuroanatomical 
structures and inducing memory decline. 

These age-related alterations of lipid metabolism contribute to 
reduce the PUFA content in phospholipids, especially DHA, in the 
brains of the elderly. This DHA reduction in cell membranes, especially 
of synaptic terminals, mitochondria and endoplasmic reticulum [73] 
has to be prevented since these structures are crucial for maintaining 
the function of the CNS, notably synaptic integrity, and limiting 
the age-related neuroinflammation and oxidative stress involved in 
cognitive decline [24,48]. 

Brain plasticity alterations during aging
Brain’s capacity to modify its neuronal circuit function is called 

plasticity. Synaptic plasticity refers to the activity-dependent changes 
in the strength and efficacy of synaptic transmission of synapses [74]. 
Long-term potentiation (LTP) represents one of the main form of long-
term synaptic plasticity, defined as the strengthening of a synapse for a 
minute to a lifetime and is thought to play a key role in hippocampal 
function [75,76]. The establishment of LTP is highly dependent on the 
activation of the glutamatergic N-methyl-D-aspartate (NMDA) and 
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α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 
receptors which allow the recruitment of various signaling pathways 
and induce a remodeling and a specification of the synapse. 

Cognitive alterations occurring during aging are partly due to 
morphological and physiological changes. Indeed, it has been reported 
a decrease in the density of NMDA and AMPA receptors associated 
with a decrease in synaptic transmission. Moreover, a demyelination of 
nerve fibers, and a reduction in the complexity of dendritic arborization 
as well as a decrease in the length and number of dendritic spines have 
been observed [77]. These disturbances in brain synaptic circuitry 
occurring during aging, especially in the hippocampus and prefrontal 
cortex, might promote relevant cognitive decline and the development 
of neurodegenerative diseases [78].

Several studies linked aging with impaired hippocampal LTP in 
rodents, which appears to be related with decreased ability to consolidate 
long-term memory [79,80]. Age-dependent decay of hippocampal LTP 
in rats has been correlated with poorer performance on spatial memory 
tasks [45,81]. LTP deficits occurring during aging can be explained by a 
neuronal reorganization, notably by structural changes of synapses and 
modifications in the morphology of neurons, in the prefrontal cortex 
and the hippocampus [82]. 

In addition, a large number of studies have observed a correlation 
between alterations of hippocampal LTP and structural changes of the 
synapse during aging. Indeed, synaptic loss, morphological alterations 
of dendrites, and a reduction in the expression of synaptic markers such 
as synaptophysin, are likely to be responsible of age-related reduction 
in hippocampal synaptic transmission and to contribute to cognitive 
deficits [83,84]. In humans, a reduction in spine number and length, 
as well as dysfunction of dendritic processes and changes in receptors 
and neurotransmitters release processes have also been described in 
the hippocampus associated with age-related cognitive impairments 
[85,86]. Studies in aged rats have shown a decrease in number 
of synaptic connections of about 30% in the dentate gyrus (DG), 
concomitantly with a decrease in their spatial memory performance 
[87,88]. Furthermore, a decrease in the expression of the synaptic 
markers synaptophysin, neurogranin as well as neuromodulin occurs 
during aging which is associated with altered LTP and spatial memory 
deficits in aged mice [89-92]. 

Other studies have shown a decreased expression of NMDA and 
AMPA receptors concomitantly with an increase in Ca2+ conductance 
in aged neurons, meaning that calcium signaling is also affected by 
age [93,94]. These changes in calcium homeostasis can consequently 
lead to synaptic plasticity alterations [93]. Among the factors located 
downstream of the calcium signal, other signaling pathways are 
affected by aging. The most implicated signaling pathway is the 
Mitogen-activated protein kinases (MAPK)/Extracellular signal-
regulated kinase (ERK)/cAMP-response element-binding protein 
(CREB) pathway which plays a crucial role in the formation of long-
term memory and is highly conserved during evolution [95]. However, 
many studies have shown that aging is associated to an alteration of 
this pathway. Indeed, Simonyi et al. [96] showed a 20% reduction in the 
expression of ERK transcripts in the hippocampus of 13-month-old rats 
compared to 3-month-old rats. In addition, hippocampus of mice aged 
23-24 months exhibits a reduction in CREB activation compared to 5-6 
month-old adult mice, which is correlated with a poor spatial memory 
performance as measured in the Morris water maze [97]. 

Neurogenesis, also involved in brain plasticity, is defined as the 
processes leading to the formation of functional neurons. These 

processes include proliferation of neural stem cells/neural progenitor 
cells, migration of newly formed neurons, differentiation into a defined 
phenotype and its functional integration to the brain circuit [98]. In the 
hippocampus, new neurons generated are important for learning and 
memory [99]. Although hippocampal neurogenesis seems to persist 
throughout lifespan, an age-related decrease has been highlighted [100]. 

Indeed, an age-related reduction of the production of new neurons 
has been demonstrated in the hippocampus of old humans and rodents 
which has been associated with a decline in hippocampal-dependent 
spatial memory [101,102]. Despite the age-related decrease in the 
production of new hippocampal neurons, studies have shown that 
neurons integrated to the brain circuit appear functionally equivalent 
to those in young brain [103] suggesting that neurogenesis during aging 
is downregulated. In support, reduced cell proliferation and retarded 
neuronal maturation as well as an increased quiescence of neural stem 
cells have been demonstrated in hippocampus of aged rats [104]. These 
changes in the hippocampus could be explained by modifications in 
the neurogenic milieu occurring during aging, notably by the decreased 
expression of key neurotrophic factors. 

Several neurotrophics factors involved in development, survival and 
functioning neurons are affected by aging [105]. Indeed, a decreased 
expression of the neurotrophin Brain Derived Neurotrophic Factor 
(BDNF) signaling, involved in memory formation, has been correlated 
with age-related reduction of neurogenesis, impaired spatial memory 
and cognitive deficits [106,107]. In both elderly and rodents, the age-
related decrease in BDNF levels concomitant with its receptor Tyrosine 
kinase B (TrkB) is associated with reduced cognitive functioning 
demonstrated by impaired performance on spatial memory tasks 
[106,108]. This decrease further contributes to age-related impairment 
of neurotrophic signaling in the hippocampus. 

Recently, studies have shown using heterochronic parabiosis that 
young animals exposed to an old systemic environment containing 
blood-borne factors, or to plasma from old mice, displayed a decreased 
synaptic plasticity, reduced adult neurogenesis and impaired spatial 
learning and memory [109]. These observations suggests that age-
dependent systemic changes can modulate neurogenesis and synaptic 
plasticity which can potentially contribute to the decline in regenerative 
capacity observed in the normal aging brain and constitute a new 
strategy to target age-related dysfunctions.

All together, these findings suggest that alterations in hippocampal 
synaptic plasticity, especially of LTP, and neurogenesis may contribute 
to the age-related cognitive decline. Therefore, strategies capable of 
maintaining synapse integrity and restoring levels of factors involved 
in the processes of neurogenesis may be promising to prevent the 
development of memory deficits.

Chronic low-grade inflammation during aging
In physiological conditions, inflammation acts transiently, 

rising when needed then fading down, which is essential as it helps 
organisms to fight infections and plays crucial roles in repair as well 
as in maintenance of organs. Normal brain aging is associated with a 
chronic low-grade inflammation linked to the immunosenescence of 
the CNS also known as “inflammaging”. Franceschi et al. [110] defined 
that inflammaging is mainly due to dysfunctional organelles such as 
mitochondria, misplaced molecules (examples: lipofuscins, advanced 
glycation end products (AGEs), mitochondrial and nuclear DNA, etc), 
alterations of the ubiquitine/proteasome system as well as activation of 
the DNA damage response which lead to the low-grade activation of 
the immune system. 
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Microglial cells are the resident immune cells of the CNS involved 
in various physiological and pathophysiological functions [111]. These 
cells are equipped with various pattern recognition receptors (PRRs), 
including Toll-like receptors and NOD-like receptors which allow 
them to recognize both damage- (DAMPs) and pathogen- (PAMPs) 
associated molecular patterns and initiate an immune response [112]. 
During homeostasis, microglia are strictly regulated by factors within 
the CNS microenvironment but with aging, microglia are suggested 
to develop age-dependent cellular dystrophy and to become senescent 
[113]. Studies have reported dystrophic changes in microglia including 
appearance of microglial aggregates, altered morphology, and reduced 
arborization in addition with a decreased mobility in aged human and 
mice brain [114,115]. Furthermore, age-dependent microglia activation 
has been described in rodents [116,117]. Indeed, aged microglia 
take on a “primed” phenotype, characterized by an exaggerated and 
uncontrolled inflammatory response to an immune stimulus [118]. 
Aged microglia also display increased levels of lipofuscin granules, 
molecular sign of microglial senescence [119,120]. These lipofuscin 
granules have been recently shown to contain myelin fragments [121], 
suggesting impairments of its degradative pathways. Thus, microglial 
senescence has been linked to functional changes partly involved in 
the age-related increase in microglia-mediated neuroinflammatory 
response, driving the progression of neurodegenerative pathologies.

Inflammaging is characterized by the increased blood and brain 
levels expression of pro-inflammatory cytokines, including tumor 
necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), 
and interleukin-18 (IL-18) under basal conditions and downregulation 
of the expression of anti-inflammatory factors such as interleukin-10 
(IL-10), interleukin-4 (IL-4) or BDNF [122,123]. Studies have shown an 
increased expression of IL-6 in the hippocampus, cortex and cerebellum 
of aged mice compared to young adults [15,124] and a decreased 
expression of IL-10 [57]. Importantly, IL-6 serum levels predict 
incidence of disabilities and other deficits [125], including mobility and 
walking speed [126]. Other studies have shown that microglial cells 
from the brains of aged mice and rats produce more IL-1β and IL-6 
than microglia from young animals [119,127-129]. The overproduction 
of IL-6 by aged mouse microglial cells is due to a sustained increase 
in NFκB transcription factor [130]. This chronic low-grade production 
of pro-inflammatory cytokines associated to microglial overactivation 
has been linked to the development of cognitive impairments [131]. 
Inflammaging is also characterized by the upregulation of the expression 
of MHC II, CD68, caspase-1 as well as CD11b [132-134], representing 
the hallmarks of age-dependent microglia activation. Studies have 
shown that an age-related increase in cerebral IL-1β expression is 
observed in patients without neurological pathologies. This is associated 
with microglial cell activation, characterized by an increased MHC II 
expression and a change in morphology of microglial cells [135]. The 
number of microglial cells expressing MHC II also increases with age 
in rats [116]. 

Numerous studies have found a causal link between elevated 
cytokine levels in the blood and the brain and age-related cognitive 
dysfunctions. Epidemiological studies performed in elderly have 
correlated elevated plasma levels of IL-6 with cognitive decline 
including speed of information processing [131,136]. Furthermore, 
in hippocampus of aged rodents, significant increase in levels of IL-1β 
induced by infection or stress has been shown to impair learning and 
memory [137,138]. IL-6-deficient mice are protected from age-related 
decrease in cognitive performance [139] and display an attenuated 
induction of pro-inflammatory cytokines in their hippocampus in 
response to a bacterial endotoxin as compared to wild-type mice [140]. 

Overall, these findings support the idea that chronic low-grade 
inflammation occuring during aging may contribute to cognitive 
impairments. Thus, limiting the expression and the action of pro-
inflammatory cytokines appears essential to prevent age-realated 
cognitive decline and the development of neurodegenerative 
pathologies. 

Oxidative Stress during Aging
The “free radical theory of aging” has been described by Harman 

[141] as one of the most prominent model for age-related brain changes 
and cognitive decline. This theory proposes that aging is a consequence 
of free radical-induced damage on cell components and connective 
tissues, and the inability to counterbalance these changes by endogenous 
antioxidant defenses. Mitochondrial dysfunctions have also been involved 
in the physiological process of aging [142] since mitochondria generate a 
significant amount of cellular energy by consuming approximately 90% 
of intracellular oxygen through oxidative phosphorylation. According 
to the theory and although mitochondria are free-radical producers, 
they are also targets of ROS leading to increased oxidative damage. 
Consequently, damaged mitochondria become less efficient, loose their 
functional integrity and release more oxygen molecules thus increasing 
oxidative damage with age [143].

Under normal circumstances, oxidative stress is controlled by the 
balance between the production and the removal of ROS within the 
cell and in the local microenvironment. The level of oxidant molecules 
such as ROS plays a crucial role in signaling and synaptic plasticity by 
acting as cellular messenger [144] and growing evidence suggests a 
delicate balance between free radicals production and brain protection 
or damage [10,145]. Indeed, the maintenance of the intracellular redox 
state is essential for hippocampal neurogenic function [146] as well as 
LTP processes through the appropriate NMDA receptor function [147]. 
By contrast, dysregulation of the intracellular homeostasis, representing 
a common feature of the aging brain, results in accumulation of 
oxidative damage and can have deleterious consequences for neuronal 
function leading, in extreme conditions, to the cell death [99]. For 
example, studies have shown alterations in intracellular redox ratio 
[148] as well as LTP impairments associated with increased oxidative 
damage to cellular lipids in the hippocampus of aged rodents [149]. 

Several factors are involved in the age-related imbalance in the 
intracellular redox state. Indeed, studies performed in both aged 
humans and rodents have shown in the hippocampus disturbances of 
energy metabolism and an increased oxidative stress, protein oxidation 
and lipid peroxidation [62,150,151]. These observations have been 
corroborated using gene microarrays in hippocampus of aged rats 
[89]. In addition, an increased mitochondrial DNA (mtDNA) damage 
in the aged brain has been shown, probably due to a lack of mtDNA 
repair mechanisms, as well as the proximity of mtDNA to the inner 
mitochondrial membrane where ROS are generated [152]. Finally, 
a hippocampal decrease in the levels of endogenous antioxidants, 
including superoxide dismutase (SOD), catalase and other reductases, 
has been observed in both aged humans and rodents [150,153]. This 
reduction in antioxidant levels leads to an altered neuroprotection 
against oxidative damage. Interestingly, studies have shown in aged 
mice that an antioxidant treatment could moderate the age-related 
cognitive decline and the elevated hippocampal ROS levels [154]. 
That, together with age-related mitochondrial dysfunction, causes 
alterations of cellular architecture within the brain and raises the 
fact that uncontrolled free radical production is a major contributor 
to the loss of neuronal homeostasis, leading to accelerated aging and 
neurodegenerative disease development [155].
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Nutrition as a potential protective factor of age-related 
cognitive decline

Actually, there is a growing interest to consider nutrients as 
a potential way to prevent or delay age-related cognitive decline. 
Nutrition is known to play a role in healthy aging since dietary and 
nutrient patterns have been linked to health outcomes related to 
aging [11]. It is particularly important in the elderly because of a 
decreased rate of digestion and absorption of nutrients [156]. The 
most complete association of nutrients is the Mediterranean diet 
combining n-3 LC-PUFAs from fish, with vitamins and polyphenols 
from fruits and vegetables and having a beneficial effect on age-related 
cognitive decline. Then we focused on n-3 PUFAs and different duos 
of nutrients identified in epidemiological and observational studies 
as acting synergistically and having beneficial effects towards brain 
aging: n-3 PUFAs and vitamin A, vitamin E, vitamin D, polyphenols, 
pre- or probiotics. We completed with benefits from dairy products that 
favored brain DHA incorporation.

Beneficial effects of the Mediterranean diet on memory 
performance during aging

The Mediterranean diet contains fish rich in n-3 LC PUFAs and 
plant foods (grains, vegetables, fruits, nuts and seeds, olive oil) rich in 
many nutrients such as vitamins and polyphenols. All together these 
nutrients can potentially contribute to better health and cognition.

Several longitudinal epidemiological studies have examined the 
relationship between consumption of the Mediterranean diet and 
cognitive performance. Indeed, a large panel of studies have shown 
that the Mediterranean diet is associated with a lower risk of cognitive 
decline, and development of MCI or AD [157-159]. In contrast, other 
studies do not find any beneficial effect of the Mediterranean diet on age-
related cognitive decline (reviewed in [160]). There are many potential 
reasons for such inconsistencies: the duration of the intervention, 
the different Mediterranean diets that are used do not always provide 
the same nutrients in the same amount, the lack of sensitivity of the 
methods used to evaluate a beneficial effect on age-related cognitive 
decline. Recently, a systematic review of randomized controlled trials 
(RCT) has confirmed evidence of a significant beneficial effect of the 
Mediterranean diet on cognitive functions related to global cognition, 
working memory, verbal and visual memory, visuospatial, language and 
executive function domains [161]. The benefits of the Mediterranean 
diet were always compared to the effect of a low-fat control diet 
that showed poorer cognitive performance. This means that the 
Mediterranean diet contains nutrients that can act synergistically to 
provide a powerful effect but the exact nutrients that induce such a 
synergistically effect are not known. However, n-3 PUFAs, vitamins and 
polyphenols seem to be good candidates as they have been shown to 
protect the brain from neuroinflammation and oxidative stress and to 
improve cerebral blood flow [160]. n-3 PUFAs are the only components 
of the Mediterranean diet which are immunomodulators so we focused 
first on the effects of n-3 PUFAs and on the interest to combine n-3 
PUFAs, an anti-inflammatory nutrient, to antioxidants such as vitamins 
or polyphenols or to pre- and probiotics to increase their bioavailability. 

Beneficial effects of n-3 PUFA on memory performance 
during aging

DHA represents the main n-3 PUFA in the brain and is involved 
in neurological function by modulating signal transduction pathways, 
neurogenesis, neuroinflammation, synaptic plasticity, membrane 
integrity as well as membrane organization [47].

The effects of n-3 PUFA supplementation have been assessed 
in humans. Many observational studies have associated dietary 
consumption of DHA with improved cognitive function and/or 
reduced cognitive decline in the elderly. Indeed, Gonzalez et al. [162] 
found in a cohort of 75 years old elderly residents a positive correlation 
between dietary consumption of DHA and mini-mental state exam 
(MMSE) scores, used to evaluate cognitive functions and memory 
abilities. A prospective observational study realized in a healthy elderly 
population reported that baseline dietary DHA intake levels at 70 
years old is positively correlated with a better declarative memory test 
performance at age of 75 [163]. Furthermore, it has been shown in the 
elderly that high fish consumption is associated with a lower risk of 
developing neurological disorders [11,164]. Several epidemiological 
and observational studies have reported that patients with high blood 
levels of n-3 LC-PUFA had lower cytokine production [165,166]. 
A systematic meta-analysis peformed by Yurko-Mauro et al. [167] 
linked DHA intake and cognitive outcomes and showed a substantial 
improvement in episodic, working and semantic memory. More 
recently, an interventionnal study from McNamara et al. [168] showed 
in elderly with cognitive complaints that supplementation with fish 
oil is associated with reduced self-reported inefficiencies in everyday 
functioning as well as improved cognitive capability. 

Evidence of beneficial effects have also been evaluated in animals. 
For example, aged mice fed a DHA/EPA diet display their brain 
accumulation that protects against neuroinflammation and cognitive 
impairment but also limits stress-related synaptic reduction [15,71]. 
Other studies have shown that DHA administration in old rodents 
improves spatial cognition ability, learning ability and memory 
[169,170]. 

DHA has been shown to promote neurogenesis, neural plasticity 
and LTP by increasing BDNF that affect the AkT and MAPK/ERK/
CREB signaling pathways [171,172]. n-3 PUFA supplementation in 
rodents has been shown to increase hippocampal synaptic plasticity and 
improve long-term memory in aged rodents [173]. Rodents exposed 
to n-3 PUFAs supplementation display facilitated hippocampal LTP 
and positive modulations of Calcium/calmodulin-dependent kinase 
II (CaMKII) and NMDA receptor function which are crucial for 
the maintenance of LTP [174,175]. Recently, Sidhu et al. [176] have 
shown in aged mice that DHA ameliorates the age-related loss of 
brain synaptic proteins, which are important for synaptic integrity and 
neurotransmission, crucial for proper cognitive function. Furthermore, 
DHA supplementation of 25-26 months old rats reverses age-related 
decrease in neurogenesis as well as transcription factors involved in 
learning and memory by enhancing the retinoid X receptor (RXR), 
retinoic acid receptor (RAR) and peroxisome proliferator-activated 
receptors (PPARs) which may improve cognition [177]. Tokuda et 
al. [178] have shown in rats that DHA supplementation may increase 
newborn neuron production and/or survival. DHA is also involved 
in the reduction or the resolution of inflammation occurring during 
aging. Indeed, aged rodents fed a fish oil-enriched diet displayed lower 
blood and brain levels of pro-inflammatory cytokines (IL-1β, TNF-α 
and IL-6) [179-181]. Chronic low-grade inflammation developped 
during aging can be modulated by DHA and its metabolites via several 
pathways, including activation of PPARs, inhibition of nuclear factor 
kappa-B (NFκB), and activation of the transmembrane receptor 
GPR120 [182,183]. Specialized pro-resolving mediators (SPMs) derived 
from DHA, including protectins, D-series resolvins, and maresins, 
are important in the resolution of inflammation since they have anti-
inflammatory and pro-resolving properties as well as neuroprotective 
functions [20-22]. They are derived from DHA via cyclooxygenase 
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(COX) and lipoxygenase (LOX) pathways [23]. Although DHA has anti-
inflammatory properties, some studies performed in aged rodents have 
reported beneficial effects of fish oil on oxidative stress by promoting 
antioxidase activity, notably SOD and catalase [184,185].

Thus, promoting the accretion of n-3 PUFAs through diet, and 
especially DHA, which is able to influence many signaling pathways 
and brain systems would be a strategy of choice in the maintenance of 
the homeostasis of the CNS during aging and in the prevention of age-
related cognitive decline.

Beneficial effects of vitamin A and DHA on memory 
performance during aging

Vitamin A plays a key role in maintaining cognitive performance 
during all life and alterations of its metabolism are specifically associated 
to cognitive decline [27,186,187].

Vitamin A acts through its active metabolite, retinoic acid (RA). 
During aging, vitamin A metabolism is altered resulting in a decrease in 
RA bioavailability, and especially in brain in the hypoactivation of the 
retinoid pathway in peripheral blood mononuclear cells in humans and 
in brain of aged animals [90,188]. This hypoactivation of the retinoid 
pathway is involved in the etiology of age-related cognitive decline 
[91]. It is associated to a decrease in the expression of proteins involved 
in synaptic plasticity [90] that contributes to cognitive alterations in 
aged animals. Actually, we showed that a deficit in vitamin A induces 
alteration in synaptic plasticity and cognitive deficits associated to 
aging [46,189].

To the contrary, RA supplementation improves learning and 
memory performance in aged animals by restoring the expression 
of retinoid receptors (RAR and RXR) that regulate the expression of 
genes involved in synaptic plasticity and neurogenesis in hippocampus 
[91]. Moreover, a 4-month vitamin A supplementation in 13-month-
old rats is able to increase the intracellular availability of RA, improves 
the arborization of newborn immature neurons and preserves spatial 
memory performance in 17-month-old rats [27]. Finally, recent data 
have revealed an anti-inflammatory effect of RA. Indeed, in microglial 
cell culture, RA, through its RAR and RXR receptors, induces a sharp 
decrease in LPS-induced production of proinflammatory cytokines 
[26]. Also RA possibly acts by protecting the integrity of the blood 
brain barrier against inflammatory insult [190].

n-3 PUFAs and vitamin A have synergistic effects in the promotion 
of neurobiological processes involved in cognitive performance [191]. 
Indeed, RA and DHA are able to bind equally RXR [192]. Thus, a n-3 
PUFA rich diet has beneficial effects on cognitive performance and 
regulates the expression of genes involved in synaptic plasticity in 
rodents through nuclear receptors common to RA [193]. Moreover, 
Létondor et al. [191] highlighted for the first time a combined effect of 
a diet enriched in n-3 LC-PUFAs (0.7% EPA+0.7% DHA) and vitamin 
A (45IU/g of diet) on the age-relative cognitive decline, especially 
on reference memory performance. They showed that this beneficial 
synergic effect on memory could be in part mediated by RXR signaling 
pathway.

Beneficial effects of vitamin E and DHA on memory 
performance during aging

Vitamin E was first discovered by Evans and Bishop [194] and refers 
to a group of compounds that include both tocopherols and tocotrienols. 
Alpha-tocopherol is the main source in European diet (found in olive 
and sunflower oils) while gamma-tocopherol is the main source in 

American diet (found in soybean and corn oils) [195,196]. Tocopherols 
are radical scavengers and vitamin E has been well characterized as a 
powerful lipid-soluble antioxidant through its ability to scavenge ROS 
in cellular membranes [197]. 

In the aging brain, as well as in the case of several neurodegenerative 
diseases, there is a decline in the normal antioxidant defense 
mechanisms, which increases the vulnerability of the brain to the 
deleterious effects of oxidative damage [198]. Vitamin E administered 
to rodents can improve age-related impairments and improve cognitive 
behaviors [199]. The prospective epidemiological studies on dietary 
vitamin E effects consistently show statistically significant inverse 
associations with incident dementia and AD, and with cognitive decline 
[200]. 

Very few studies evaluate the synergistic effect between vitamin 
E and DHA in cognitive decline. A recent study demonstrates that 
in naturally aged rats, n-3 PUFAs and vitamin E supplementation 
improves the redox balance, lipid profile and liver function parameters. 
The antioxidant parameters are improved with a concomitant reduction 
in the lipid peroxidation products. Even if this study does not investigate 
the impact on cognitive function, the authors strongly suggest that 
dietary supplementation with n-3 PUFAs and α-tocopherol may reduce 
the pathological consequences of aging [201]. Nevertheless, a clinical 
study combining DHA and vitamin E (252 mg DHA, 60 mg EPA and 
10 mg vitamin E) does not reveal an effect of this supplementation 
on cognitive function [202]. These results are consistent with data 
demonstrating a smaller increase in plasma concentrations in vitamin 
E in the presence of fish oil and an immuno-enhancing effect of vitamin 
E in the elderly dampened when concomitantly consumed with fish 
oil [203]. By the way, further studies are necessary to determine real 
beneficial effects of vitamin E and DHA on cognitive decline and if a 
better antioxidant can be supplemented with n-3 PUFAs.

Beneficial effects of vitamin D and DHA on memory 
performance during aging

Vitamin D is a fat-soluble vitamin that is naturally present in very 
few foods, added to others, and available as a dietary supplement. It is 
also produced endogenously when ultraviolet rays from sunlight strike 
the skin and trigger vitamin D synthesis. Vitamin D obtained from sun 
exposure, food, and supplements is biologically inert and must undergo 
two hydroxylations in the body for activation. The first occurs in the 
liver and converts vitamin D to 25-hydroxyvitamin D, also known as 
calcidiol and considered as a stable marker of vitamin D status. The 
second occurs primarily in the kidney and forms the physiologically 
active 1,25-dihydroxyvitamin D, also known as calcitriol [204].

Vitamin D plays a key role in the development and maintenance of 
the central nervous system [29,205]. Moreover, vitamin D is activated 
in neuronal and glial cells [206] and modulates the expression of 
neurotrophins for brain function [207]. Human studies reviewed 
in Tucker [29] conclude that vitamin D protects against age-related 
cognitive decline. Low concentrations of vitamin D are associated with 
significant cognitive decline. Vitamin D is important in elderly because 
the lack of vitamin D is prevalent in this population. Moreover, the 
activation of vitamin D is lower in older adults.

It was shown that vitamin D suppresses the inflammatory response 
in activated immune cells [26]. Vitamin D acts through the inhibition 
of nitrite oxide release from activated immune cells via interaction with 
vitamin D receptor [208], or through the inhibition of NFkB activity 
[209]. It has been shown that the relative risk of cognitive decline was 
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60% higher in elderly adults with severely deficiency in 25-hydroxy 
vitamin D when compared with those with sufficient levels [210]. The 
interaction between n-3 PUFA and vitamin D is still poorly investigated, 
especially in the elderly population. Itariu et al. [211] interestingly 
found that the inverse association between vitamin D deficiency and 
systemic inflammation is overcome by treatment with n-3 PUFA. These 
results allow to hypothesize that the mechanisms by which vitamin D 
and n-3 PUFA influence inflammation are strictly interconnected, and 
that the correction of a single nutritional deficiency may be sufficient to 
limit the negative effects of the other. A recent clinical trial on Chinese 
population suggests that lower 25-hydroxy vitamin D and DHA levels 
are risk factors for mild cognitive impairment, a syndrome that defined 
a cognitive decline greater than expected for an individual’s age and 
education level [212]. Recently, Kurtys et al. [26] study the combination 
of vitamin D, vitamin A and n-3 LC-PUFAs and they find an interesting 
combined effect of these nutrients at concentrations where they 
individually had little effect. This nutrient mix significantly reduced 
inflammation by increasing anti-inflammatory efficacy.

Beneficial effects of polyphenols and DHA on memory 
performance during aging

Polyphenols are phytochemicals now considered as essential 
micronutrients. Polyphenols can be divided into four main classes based 
on their structure: flavonoids, phenolic acids, stilbenes and lignans 
[213]. More and more evidences demonstrate the ability of dietary 
polyphenols to exert beneficial effects on brain aging. Polyphenol-rich 
fruits (e.g. blueberry, strawberry, concord grapes...) are now highly 
studied for their potential beneficial effects on memory [214,215]. 

Clinical studies have also observed an improvement of memory in 
older people with a supplementation with grape juice or with blueberry 
juice rich in flavonoids [216,217]. Moreover, flavonoid consumption 
has been associated with better cognitive performance in an 
epidemiological study over 10 years [218]. Although the mechanisms 
of action of flavonoids remain unclear, there is evidence that they 
modulate cellular and molecular processes by initiating neurogenesis 
and reducing neuronal damage, neurotoxicity and neuroinflammation 
[219]. 

In rodents, first evidence demonstrates their ability to reverse 
or allay age-related deficits in cognitive tasks, including those that 
require the use of spatial learning and memory in rodent [220-222]. 
Within the flavonoid class, anthocyanins, present in red berries as 
in blueberries, have been shown to prevent memory deficits in aged 
animals [220,223,224]. Recently, a polyphenol-rich diet from grape 
and blueberry with high contents of flavonoids, stilbenes and phenolic 
acid was successful to reverse age-induced effects in mice. This 
supplementation slightly improves memory of middle-aged mice by 
facilitating the use of spatial strategies. Moreover, this performance 
improvement can be linked to the restoration of CaMKII mRNA levels 
and to an increased hippocampal neurotrophic factor NGF expression 
[221].

Given such evidence of neurocognitive benefits in the context of 
aging, and the importance of developing interventions that are efficient 
and compatible with long-term adherence in advance of pathological 
cognitive decline, it appears necessary to explore the synergistic effect 
of DHA and polyphenols.

Preclinical studies demonstrate that intestinal uptake and blood 
concentrations of n-3 PUFAs are increased when co-administered 
with flavonoids [225,226]. Moreover, Hadad et al. [227] establish 
that concentrations of EPA with carotenoids and polyphenols are 

synergistically very efficient in inhibiting the transformation of 
microglia to M1 activated phenotype. Microglia activation toward the 
M1 phenotype has been reported to contribute to the neurodegenerative 
processes and cognition alterations due to the release of pro-
inflammatory mediators and cytokines [228]. This result comforts the 
potential synergistic effect of DHA and polyphenols to prevent cognitive 
deficits. In addition to their potential role in neuroinflammation, the 
antioxidant property of flavonoids may prevent n-3 LC-PUFA from 
peroxidation to which they are particularly sensitive due to their 
multiple double bonds [229] and further supports a synergistic effect 
of both food compounds. 

To our knowledge, only one study in humans evaluated the effect 
of blueberry and fish oil on cognitive functions but no synergistic 
effect has been observed, whereas fish oil group or blueberry group 
individually displayed fewer cognitive symptoms [168].

In animals, very few studies investigate the impact of combined 
flavonoids and fish oil on brain aging. Giunta et al. [230] demonstrate 
a significantly greater anti-amyloidogenic effect of fish oil and 
flavonoids, relative to each component fed separately in AD transgenic 
mice. Perez et al. [4] studied that combination of naturally occurring 
micronutrients α-tocopherol, citicholine, 5-methyltetrahydrofolic 
acid (5-MTHF), quercetin and the n-3 fatty acid containing PS-DHA 
reliably rejuvenates cognitive performance in aged mice, both males 
and females. The administration of these micronutrients alone or in 
simpler diets was not sufficient to induce a positive effect, revealing 
the importance of a synergistic effect. Results highlight the importance 
of including the flavonoid quercetin, a strong antioxidant and anti-
inflammatory agent [231,232] in the combination. But in this study, the 
addition of vitamins and minerals could increase the bioavailability of 
quercetin, which facilitates learning. 

Beneficial effects of pre- or probiotics and DHA on memory 
performance during aging

The microbiota is a dynamic ecosystem and recent evidence 
demonstrates a clear association between changes in the microbiota and 
cognitive behaviors, notably learning and memory [233]. Probiotics are 
live microorganisms that are claimed to provide health benefits when 
consumed [234]. Probiotics have been the subject of various researches 
and appears to modulate notably inflammation [235]. However, 
data on the effects of probiotics on improving cognitive disorders in 
aging are scarce. Akbari et al. [236] determine that supplementation 
with probiotics (Lactobacillus acidophilus, Lactobacillus casei, 
Bifidobacterium bifidum, and Lactobacillus fermentum (2×109 CFU/g 
each)) for 12 weeks positively affects cognitive function in AD patients. 
Interestingly the probiotic supplementation differently influences 
the lipid profiles with a substantial decrease of the triglyceride 
level in the probiotic-supplemented patients but the authors do not 
investigate DHA levels. Other recent studies also demonstrate a role 
of probiotic supplementation in cognitively impaired patients mediated 
by inflammation. Cattaneo et al. [237] demonstrate a link between 
stool abundance in Faecalibacterium prausnitzii and pro and anti-
inflammatory cytokines in patients with cognitive alteration. Leblhuber 
et al. [238] also evidence the impact of microbiota composition on low-
grade systemic and intestinal inflammation. All these findings together 
may indicate changes in the microbiota-gut-brain-axis correlated to 
neuroinflammation during cognitive decline.

Concerning interaction between DHA and probiotics, literature 
is rare. A recent RCT in an overweight Indian population has shown 
that supplementation with n-3 PUFAs plus a probiotic has a greater 
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beneficial effect on insulin sensitivity, lipid profile, and atherogenic 
index than the probiotic alone, although n-3 PUFA supplementation 
shows only marginal effects on all these parameters [239].

Joffre et al. [31] demonstrate in rodents that a supplementation 
with Lactobacillus fermentum might have a key role in the protection 
of the brain via the brain accretion of n-3 PUFAs especially during n-3 
PUFA deficiency (as occurred during aging). 

Considering all these results, investigating the synergistic effect 
between DHA and probiotics appears to be a promising way to prevent 
age-related cognitive decline linked to age.

‘Prebiotic’ is a term used to describe a food component that may 
provide a health benefit when eaten because of changes it may bring 
about to the gut bacterial flora. Only one study investigated the 
role of prebiotics and DHA in cognitive impairment during aging 
but in a model of Parkinson Disease (PD). Interestingly, this study 
demonstrates that a diet containing specific prebiotic fibers such as 
fructo-oligosaccharides and galacto-oligosaccharides, DHA (0.75/100 
g diet) and EPA (0.50/100 g diet) and other nutrients increases spatial 
recognition after a rotenone (a pesticide inducing PD in rodent model) 
injection compared to animals fed with a diet without prebiotics. 
This combination of nutrients could act synergistically to increase 
the synthesis of synaptic membranes [240] and could improve both 
neuronal connectivity and behavioral output [241]. 

Beneficial effects of dairy products on memory performance 
during aging

Dairy products play a key role in human diet because they 
contain many nutrients: proteins, minerals, vitamins…. However, 

during the last decades, they were criticized and accused to enhance 
cardiovascular diseases. Actually, dairy fat has been reconsidered [242]. 
Dairy fat contains about 400 fatty acids (2/3 of saturated fatty acids in 
milk). Among the saturated fatty acids, 16% are short or medium chain 
fatty acids (<C14) that have a biological role [243]. During the perinatal 
period, these fatty acids are specifically oriented toward energy 
suppliers and are beta-oxidized. They may thereby spare ALA, one of 
the best beta-oxidation substrates, from oxidation, and favour ALA 
partitioning towards the desaturation and elongation pathways and its 
conversion into very LC-PUFAs [244,245]. Therefore, this protective 
effect favors the endogen synthesis of DHA and potentiates its biological 
activity. Indeed, we showed that dairy fat promotes neurogenesis and 
cognitive processes at adulthood [246]. Moreover, perinatal dairy fat 
consumption protects from deleterious effect induced by LPS on spatial 
memory at adulthood [246]. 

Dairy products contain also important quantities of vitamin A. Milk 
provides ¼ of the preformed vitamin A [247] and we demonstrated 
above that vitamin A plays a key role in maintaining cognitive 
performance during aging. 

Few studies have been conducted in the elderly to show the 
association between dairy product consumption and age-related 
cognitive decline. Park and Fulgoni [248] showed that dairy product 
consumption is associated to a better cognition in subjects >60 years. 
The review from Camfield et al. [1] concluded that low-fat dairy 
products, when consumed regularly as part of a balanced diet, may 
have a number of beneficial outcomes for neurocognitive health during 
aging. A meta-analysis on 7 publications involving 10941 participants 
indicates an inverse association between milk consumption and the 
risk of cognitive disorders: the highest level of milk consumption was 

Figure 2: Impact of nutrients on the age-related decrease of cognitive performance. Aging is associated to a reduction of DHA in membranes, impairment of synaptic 
plasticity and neurogenesis, increase of the oxidative stress as well as a chronic low-grade inflammation, all partly contributing to the age-related cognitive decline. 
Nutrition, and notably DHA, vitamins, polyphenols, pre- and probiotics as well as dairy products have been shown to have beneficial effects on cognition by modulating 
brain structure and function and thus to prevent the occurrence of age-related cognitive decline. Abbreviations: DHA: docosahexaenoic acid.
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significantly associated with a decreased risk of cognitive disorders [32]. 
To our knowledge, only one study conducted in 18-months-aged rats 
reports a beneficial effect of the consumption of buttermilk and krill 
oil rich in n-3 LC-PUFAs esterified in phospholipids [249]. The authors 
show that the combined nutrients are able to improve peripheral 
insulin sensitivity and to induce a significant increase of brain-
derived neurotrophic factor (BDNF) in the hippocampus favoring an 
improvement in energy state within neurons and facilitating both 
mitochondrial and protein synthesis, which are necessary for synaptic 
plasticity highly implicated in memory process.

Conclusion
All together, these data provide new targets to prevent or delay brain 

aging through nutrition and demonstrate that combinations of dietary 
nutrients could represent an optimal way (Figure 2). The Mediterranean 
diet constitute the most complete association of nutrients combining 
LC-PUFAs, vitamins and polyphenols and having beneficial effect on 
age-related cognitive deficit. The consumption of DHA during aging 
is essential since it plays a key role for the reduction or resolution 
of chronic-low grade inflammation and the maintenance of brain’s 
plasticity. The association of DHA and vitamins is promising since it 
allows the promotion of neurobiological processes involved in cognitive 
performances by acting on synaptic plasticity and neurogenesis 
(vitamin A), oxidative stress (vitamin E) as well as neuroinflammation 
(vitamin D). Polyphenols have beneficial effect on memory during 
aging through their action on synaptic plasticity and neurogenesis, 
neuroinflammation and oxidative stress. The consumption of prebiotics 
and probiotics is thought to ameliorate neuroinflammation occurring 
during aging by enhancing the accretion of n-3 PUFAs in the brain. 
Dairy products seem to be promising in term of prevention of age-
related decline but still need to be studied. Thus, investigating the 
synergic effect between DHA and these micronutrients is a strategy of 
choice in the prevention of age-related cognitive decline.
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