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Introduction
Mexico City Metropolitan Area (MCMA) children with no 

known risk factors for neurological or cognitive disorders exhibit 
cognition deficits, brain structural and volumetric changes and the 
neuropathological hallmarks of Alzheimer and Parkinson’s diseases i.e., 
tau hyperphosphorylation with pre-tangles, amyloid beta 42 (Aβ42) 
plaques, and misfolded α-synuclein olfactory bulb and brainstem 
accumulation [1-8].  Lewy neurites  and/or punctuate ɑ-synuclein 
deposits in the olfactory bulb, trigeminal thalamic tract, mesencephalic 
V, reticular and raphe nuclei, the glossopharyngeal-vagus complexes 
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 Abstract
Objective: Braak et al proposal in 2003 “a putative environmental pathogen capable of passing the gastric 

epithelial lining might induce α-synuclein misfolding and aggregation” could indeed be particulate matter gaining 
access through the most vulnerable section of the GI tract: the small bowel. This study is focused on the electron 
microscopy examination of tight junctions in duodenum of healthy dogs residing in one of the most polluted megacities 
in our continent, Mexico City Metropolitan Area (MCMA) with high concentrations of fine particulate matter (PM 2.5) 
and nanosize PM versus low-air pollution controls and to measure serum antibodies to tight junctions (TJ) and 
neural proteins in MCMA versus low air pollution exposed children.The small intestine would be a prime PM target: 
it has a single unattached mucus layer, particles have easy access to epithelial cells and Peyer’s patches, altering 
epithelial integrity and accessing the enteric nervous system. Autopsies in MCMA children v controls show extensive 
brainstem oxidative stress, microglial activation, and accumulation of α-synuclein, from the dorsal motor nucleus 
of the vagus to the substantianigrae. Air pollution targets the dorsal vagal complex in mice exposed to the polluted 
MCMA atmosphere.

Methods: A pilot observational case-control dogs and children study of high versus low PM2.5 exposures.We 
counted and evaluated the integrity of TJ’s in duodenal electron micrographs from 6 MCMA dogs (5.01 ± 1.36 years) 
and 4 control dogs (5.87 ± 1.50 years) and we measured by ELISA serum antibodies to tight junctions (TJ) and 
neural proteins in 95 MCMA versus controls (11.02 ± 3.6 years).

Results: Disruption of epithelial integrity with TJ structural changes in MCMA v control dogs (p<0.0001), the major 
determinant of paracellular permeability characterized the MCMA dogs’ small bowel architecture. MCMA children had 
higher occludin-zonulin, actin, transglutaminase 3 and 6, and glutamic acid decarboxylase autoantibodies (p<0.01). 

Conclusion: The integrity of the gastrointestinal (GI) barrier is significantly compromised in MCMA dogs and 
could be altered in MCMA children as evidenced by the autoimmune response to TJ and neural proteins. The GI 
breakdown likely impacts neuronal enteric populations and PM could reach the vagus and the brainstem. In the 
setting of urban air pollution, the evolution of a changing paradigm favoring a pathogen penetrating an epithelial 
lining and via trans-synaptic transmission reaching preganglionic parasympathetic motor neurons of the vagus nerve 
has to entertain particles as a potential culprit. Defining the linkage and the health consequences of the brain/ gut/
immune system interactions in urban children showing already the early hallmarks of Parkinson’s disease ought to 
be of pressing importance for public health, may provide a fresh insight into Parkinson disease pathogenesis and 
open opportunities for pediatric neuroprotection.
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and lung and heart autonomic ganglia are seen in MCMA v control 
children as young as 11 years old [7]. We have also shown significant 
upregulation of COX2 in the right vagus and of CD14 in both right 
and left vagus of teens and young adults residing in MCMA v controls, 
suggesting the vagus nerve plays a role in the brainstem inflammation 
and neurodegeneration process [7,8]. Balb-c mice directly exposed to 
the polluted MCMA environment for 16 months v clear air controls 
developed significant inflammation involving the dorsal vagal complex 
(DVC), similar to mice given intraperitoneal endotoxins [9]. Moreover, 
MCMA-exposed mice displayed significant DVC imbalance in genes 
for antioxidant defenses, apoptosis, and neurodegeneration [9].

Extensive data in the literature support human and animal breakdown 
of the nasal/olfactory, blood-brain-barrier (BBB) and alveolar-capillary 
barriers and the expression of detrimental genes associated to urban 
air pollution [10-13]. Significant membrane structural changes to tight 
junction protein complexes and cilia and increased permeability of 
the lung/blood barrier are described in association with tobacco smog 
containing a combination of particulate matter (PM) and gases [14-15]. 
Moreover, recent research links inflammatory bowel diseases, changes 
in gut microbiome, and abdominal pain with air pollution [16-20]. The 
work by Kish and colleagues is of particular interest to us given the 
increased gut permeability in mice exposed to particulate matter with 
a diameter of <10μm (PM10)[18]. Braak et al. proposal [21] “a putative 
environmental pathogen capable of passing the gastric epithelial lining 
might induce α-synuclein misfolding and aggregation” and the dual-hit 
hypothesis of Hawkes et al. [22] obligate us to think about the possibility 
swallowed particulate matter is gaining access to the brain through the 
most vulnerable section of the GI tract: the small bowel [23]. 

Very little is known regarding the ultrastructural features of the 
tight junction (TJs) in small bowel epithelium of young healthy animals 
with a lifetime exposure to air pollution. Likewise, the presence 
of immunological cascades in pediatric megacity residents with 
negative autoimmune histories, including celiac disease has not been 
explored. Given that MCMA children have lifetime exposures to high 
concentrations of PM and well documented breakdown of epithelial 
and endothelial barriers [2,7,10] and having the experience of studying 
healthy dogs exposed to the same environment as the children [1,24], 
we hypothesized that healthy MCMA animal facility dogs will have a 
breakdown of their small bowel cell junction integrity and children 
living in the same area will have significant higher levels of antibodies 
to host proteins involved in cell adhesion [25]. 

There were two primary aims of this study: 1. To explore by electron 
microscopy the integrity of the small bowel epithelium in healthy 
young dogs residents in MCMA and a control, low air pollution city, 2. 
To measure the serum concentrations of autoantibodies against barrier 
proteins from cohorts of matched age, gender, and socioeconomic status 
(SES) Mexican children with exposures to MCMA pollution versus low 
air pollution controls. Concomitantly, given the association between 
PM, nanoparticle toxicity and the gastrointestinal route [18,20], we also 
explored transglutaminase 3 and 6, glutamic acid decarboxylase, and 
cerebellar antibodies. 

Our results identify statistical significant abnormalities in the 
apical junctional complexes, desmosomal and gap junctions resulting 
in light and electron microscopy interepithelial gaps in the small bowel 
of MCMA dogs along with increased endocytic activity in the lamina 
propia endothelial cells loaded with nanosized PM. MCMA children 
versus controls showed significantly higher serum auto antibodies 
against occludin/zonulin associated with the integrity of tight junctions 
(TJs) and actin antibodies, a reliable marker of intestinal damage severity 

in celiac disease and an indirect marker of histological and biochemical 
activity of autoimmune hepatitis [26-28]. MCMA children had higher 
titers of transglutaminase 3 and 6, and glutamic acid decarboxylase 
(GAD65) antibodies v controls. The presence of auto antibodies against 
key nervous system components carries a large impact for a brain in 
development, raising questions about their role in neuroinflammatory 
and neurodegenerative disease mechanisms [29]. Our study suggests 
that the integrity of the GI barrier could be compromised in highly 
exposed urbanites and short and long-term neural and extraneural 
health consequences including higher risk for Parkinson’s disease have 
to be contemplated. Our ultimate intention is make the reader aware 
that the small bowel, a highly vulnerable section of the GI tract [23] 
could be key to explain our PD-like pathology and neuroinflammatory 
findings in highly exposed MCMA children, dogs and mice [4,6-9]. 

Materials and Methods
Study cities and air quality 

Children’s cohorts were selected from the Mexico City Metropolitan 
Area (MCMA) and small locations and cities in Mexico (Polotitlán, State 
of México; Zacatlán and Huachinango, Puebla; Zitácuaro, Michoacán; 
Puerto Escondido, Oaxaca; Chalma, Veracruz; Tlaxcala, Tlaxcala). 
The control cities have <75,000 inhabitants and because of their small 
size it is expected that their levels for the main criteria air pollutants 
(ozone, particulate matter, sulfur dioxide, nitrogen oxides and carbon 
monoxide) could be lower than the current US EPA standards. Air 
quality monitoring in these locations is not common because they do 
not meet the minimum criteria of population and emissions for setting 
monitoring stations according the respective Mexican standard [30]. 
Our largest source of control children (40/47) was Polotitlán, in the 
Mexico State, 121 km north-northwest of Mexico City and at 7500 ft 
above sea level. Polotitlán has 13,000 inhabitants, mostly dedicated 
to agricultural and bovine milk production. There is a very restricted 
industrial production, including one concrete plant and one candle 
small factory. Polotitlán is included within the lower air pollutant 
emitters in the State of Mexico [31]. We have done extensive clinical 
studies in Polotitlán’s heathy pediatric populations [1-5,10,29,32]. 
Because of the lack of historical continuous air pollution data in this 
location, we have followed the trend of its air quality based on the 
review of reports or unpublished data of both, emission inventories and 
measurements in the nearby region.

Mexico City Metropolitan Area is an example of extreme urban 
growth and accompanying environmental pollution [33-35]. The 
metropolitan area of over 2,000 km2 lies in an elevated basin 2,200 m 
above sea level surrounded on three sides by mountain ridges. MCMA 
nearly 24 million inhabitants, over 50,000 industries, and 5.5 million 
vehicles consume more than 50 million liters of petroleum fuels per 
day, producing an estimated annual emission of 2.6 thousand tons of 
particulate and gaseous air pollutants [36]. MCMA motor vehicles 
produce abundant amounts of primary fine particulate matter (PM2.5). 
The high altitude and tropical climate where the MCMA is settled 
facilitate ozone production all year and contribute to the formation 
of PM2.5. High ozone levels are typical of the warmer months (April 
to May) and PM higher levels are worse in the winter, when rain is 
scanty and thermal inversions are frequent. Children from MCMA 
were residents in the northern-industrialized and southern-residential 
zones. Northern children have been exposed to higher concentrations 
of volatile and toxic organic compounds, PM10, and PM2.5 including 
high levels of its constituents: organic and elemental carbon, nitro- and 
polycyclic aromatic hydrocarbons and metals (Zn, Cu, Pb, Ti, Mn, Sn, 
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V, Ba), while southern children have been exposed continuously to 
significant and prolonged concentrations of ozone, secondary aerosols 
(NO3ˉ) and particulate matter associated with lipopolysaccharidePM-
LPS [33-36]. Studies on the composition of PM2.5 with regards to sites 
and samples collected in 1997 show that composition has not changed 
during the last decade [33].

On the other hand, historical monitoring data in Polotitlán as well 
as mathematical modeling of air pollutants covering the central region 
of Mexico indicate that air quality in this part of the country has been 
typically below the equivalent US EPA air quality standards [37]. 

Participants

This research was approved by the research ethics committee at 
the University of Montana and the Hospital Central Militar. Children 
gave active assent and their parents gave written informed consent to 
participation in the study. This work includes data from 95 children 49F, 
46M (Mean age=11.02 y, SD=3.6). Inclusion criteria for all participating 
children were: negative smoking history and environmental tobacco 
exposure, lifelong residency in MCMA or a control city, residency 
within 5 miles of the city monitoring stations, full term birth, and 
unremarkable clinical histories. These children had a history of vaginal 
delivery, breast feeding for a minimum of 6 months and were introduced 
to solid foods after age 4 months. Mothers had unremarkable, full 
term pregnancies with uncomplicated vaginal deliveries and took no 
drugs, including alcohol. Children were examined by the attending 
pediatrician and considered clinically healthy. A pediatric nutritionist 
interviewed the child and asked the mother to keep a detail seven day 
food intake written record, including a weekend. Participants were 
from middle class families living in single-family homes with no indoor 
pets, used natural gas for cooking and kitchens were separated from the 
living and sleeping areas. All included children were actively engaged 
in outdoor activities and outdoor daily exposures in hours per day were 
recorded by the mother and child for 7 days, including the transit time 
to and from school, the time spent in recess and PE during school, the 
outdoor time while playing and engaging in other activities. Low (n: 47) 
and high (n:48) air pollution exposed children were matched by age, 
gender, socioeconomic status, and diets.

Peripheral blood samples

Blood was collected between 7 am and 9.00 am from an antecubital 
vein using a 21-G needle. After centrifugation at 3,000 rpm for 10 min, 
aliquots of 1.5 ml serum were transferred to CryoTubes and samples 
were frozen at −20°C and then transferred to −80°C and stored until 
further analysis. 

Reagents and methodology

Proteins and Peptides: Actin and tTG3 were purchased from 
Sigma/Aldrich St. Louis, MO. Various peptides HPLC grade with purity 
greater than 90% were synthesized by EZ Biolab Carmel, IN, including 
Glutamic Acid Decarboxylase (GAD-65),Transglutaminase-6, 
Occludin, Zonulin and Cerebellar peptide[38].The procedure for the 
detection of antibodies by ELISA is described in detail in a previous 
paper [29].

Dog small bowel samples

Previously harvested dog small bowel tissues for electron 
microscopy were used for this study. MCMA and control mixed beagles 
were whelped and housed in an outdoor-indoor kennel; husbandry was 
in compliance with the American Association of Laboratory Animal 

Certification Standards. Dogs were under daily veterinarian observation 
during their entire life, and at no time there was any evidence of 
respiratory, cardiovascular, gastrointestinal or neurological diseases. 
Dogs had all applicable vaccines and were treated with antihelmintics 
regularly. Dogs from both cohorts had the same diets. We selected to 
use small bowel optimally fixed electron microscopy tissues from 6 dogs 
(5.01 ± 1.36 years) from an independent longitudinal study involving 
the use of Nimesulide® in mixed beagle dogs. The 6 selected dogs for 
this study were in the non-treated Mexico City dog group exposed 24/7 
to the Southwest MCMA atmosphere from birth. Four dogs average age 
5.87 ± 1.50 years from a low pollution control city were also studied. 
Procedures used were in accordance with the guidelines of the Use and 
Care of Laboratory Animals (NIH Pub No.86-23). 

Light microscopy

Sections 1 μm thick were cut and stained with toluidine blue. Board-
certified pathologists(LCG, ACG) without access to the identification 
codes reviewed the sections. 

Examination of small bowel samples by Transmission 
Electron Microscopy (TEM)

Tissues were post-fixed in 1% osmium tetraoxide and embedded 
in Epon. Semi-thin sections (0.5 to 1μm) were cut and stained with 
toluidine blue for light microscopic examination. Ultra-thin sections 
(60-90 nm) were cut and collected on slot grids previously covered 
with formvar membrane. Sections were stained with uranyl acetate 
and lead citrate, and examined with a JEM-1011 (Japan) microscope. 
Each electron micrograph was evaluated separately, and then 
compared by group. We captured ultrastructural epithelial images 
including sites of TJ’s complexes. We evaluated 100 TJ’s in each cohort. 
Electromicrographs were taken from TJ’ complexes in epithelial cells 
starting at the apical region and continuing towards the base of the cell 
in a 5000 nm section (Figure 1). Electromicrographs were evaluated 
blindly and the number of abnormal TJ’s counted (Figure 1).

Figure 1: Quantification and evaluation of the tight junctions were done in 
electron micrographs by counting all TJ’s in epithelial duodenal cells starting at 
the apical region and continuing towards the base of the cell in a 5000 nm section 
(Control dog in Figure 1a, EM x 30,000 ). Electromicrographs were taken from 
each animal and the number of abnormal TJ’s identified (Figures 1b, c). Figure 
1B shows an abnormal zonula ocludens (short arrows) along separation of the 
adjacent cytoplasmic membranes (*) in an exposed dog (EM x 80,000). Figure 
1C shows intact gap junctions (arrows) adjacent to areas with discontinuity of the 
junctions (*) (EM x 80,000).
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Data analysis 

For the antibody data, we first calculated the sample mean and 
sample standard deviation of each of the characteristic variables 
including the measurements of the antibodies in control and the 
Mexico City groups. Next, we calculated the p-values of the two-
sample t-tests to investigate whether the sample means of the variables 
are significantly different between the groups. We concluded that the 
sample means of a variable in the two groups are significantly different 
only if the corresponding p-value is smaller than 0.05. Next, we 
separately calculated the percentages of the Mexico City children that 
showed measurements higher than the control mean and the control 
median for some selected variables. We also calculated the p-values 
of those percentages for testing how different they are from 50%. We 
calculated Pearson’s correlation coefficients (PCC) among each pair 

of the variables in each group and in the pooled data irrespective of 
groups. PCC measures how well the relationship between two variables 
can be described by a linear function. Abnormal TJ’s identified by EM 
were counted for exposed and control dogs and p values calculated.We 
carried out the above mentioned statistical analyses in the statistical 
software ‘R’ (http://www.r-project.org/).

Results
Air quality data 

Mexico City residents are exposed year-round to PM2.5 
concentrations above United States National Air Ambient Quality 
Standards (NAAQS). The PM2.5 annual air quality standard of 12 µg/m3 
has been historically exceeded across the metropolitan area (Table 1). 
For this work we focused on particulate matter (PM), broadly defined 
by the diameter of the aerodynamic particles, and classified into coarse 
particles (<10 to >2.5 μm; PM10), fine particles (<2.5 μm, PM2.5) and 
ultrafine PM (UFPM<100 nm). Fine and ultrafine PM are of particular 
interest given their capability to reach the brain [39]. MCMA children 
in this study have been exposed to significant concentrations of PM 
2.5 during their entire life, including the prenatal period. The high 
concentrations of PM 2.5 coincide with the time children play outdoors 
and/or stay in schools with broken windows and doors. All other criteria 
pollutants for MCMA, including nitrogen dioxide, sulfur dioxide and 
lead were at or below the current EPA standards (data not shown). 
Control children have been lifelong residents in low pollution cities 
with all criteria air pollutants below the US EPA NAAQS standards.

Electron Microscopic results

There was no statistical difference in the selected control v MCMA 
dogs’ ages (p=0.35). Quantification of abnormal TJ’s identified by 
EM yielded 14.2 ± 4.36 v 4.2 ± 1.3 in MCMA v controls (p<0.0001). 
Toluidine blue 1μm sections of normal duodenal epithelium with an 
intact brush zone and unremarkable enterocytes and goblet cells are 
characteristic of the control dogs (Figure 2A). In contrast, duodenum 
sections from Mexico City dogs exhibit segments of intestinal columnar 

Figure 2: A. Toluidine blue 1μm thick section of a control duodenum in a 5 y old dog from Tlaxcala, a low-pollution city. The brush border is intact and there is an 
epithelium with unremarkable enterocytes and goblet cells. The lamina propria has unremarkable blood vessels (rectangular frame) and lacks inflammatory cells or 
degranulated mast cells. Toluidine blue x 40   
B. MCMA 5.4 year old dog showed focal regions of the duodenal epithelium with a mild variation in the nuclear size of enterocytes and breakdown of the epithelial 
continuity (upper right arrow). There is significant submucosal tissue rarefaction (*).The lamina propria has thickened wall vessels (rectangular frame). Arteriolar blood 
vessels with thickened walls (long arrow) surrounded by abnormal stroma (arrow head) and monuclear cells are observed. Toluidine blue 1μm thick section x 40
C. Duodenal epithelium from a 4y old MCMA clinically healthy dog shows a columnar epithelium with goblet cells alternating with enterocytes. The brush border is not 
visible. Focal regions of the epithelium exhibit breakdown of the epithelial continuity (long arrows). There is significant submucosal tissue rarefaction (*).The lamina 
propia shows blood vessels with abnormal thickened walls (short arrows). Toluidine blue 1μm thick section x40.

Year
Pedregal Xalostoc

Mean SD Mean SD

1997 21.6 16.6 71.3 34.1
1998 29.3 16.8 64.9 25.4
1999 24.4 9.2 71 26.6
2000 24.7 11.3 54.8 25.3
2001 23.6 10.1 41.1 17.2
2002 23.1 9.7 38 13.7
2003 23.4 11.3 41.8 14.4
2004 18.4 9.4 35.5 14.7
2005 20.9 11.5 30.4 17.1
2006 17.8 8.4 29.8 15.6
2007 16.2 8.5 25.3 11.3
2008 18 8.3 26.3 10
2009 18.4 8.7 26.4 10.7
2010 14.4 7.4 24.9 13.2
2011 16.7 8.3 24.7 11.5
2012 17 7.5 25.9 11.7

Table 1: PM2.5 annual concentrations in μg/m3 for North and South Metropolitan 
Mexico City area selected monitoring stations.
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epithelium with goblet cells and intercalated enterocytes with no visible 
brush border (Figure 2B). A few blood vessels in the lamina propria 
reveal thickened walls and focal disruption of the lamina propia 
(Figure 2B). Exposed dogs also display fibrosis at the level of the 
lamina propia (Figure 2C). Focal regions of the duodenal epithelium 
with a breakdown of the epithelial continuity, and submucosal tissue 
rarefaction with scattered mononuclear cells are observed in Figure 
3A-3B. Low power transmission electron micrographs (TEM) reveal an 
intact epithelium and unremarkable brush border in a 5y old control 
dog (Figure 4A), while exposed dogs display a disrupted, fragmented 
epithelium with a few short villi in enterocytes, wide gaps separating 
epithelial cells, and intercellular spaces occupied by cellular debris 
(Figure 4B-4C). Control epithelium exhibits intact tight junctions and 
adherens junctions and regularly aligned microvilli (Figure 5A), while 
a wide range of abnormalities in TJ’s can be seen in exposed duodenum 
(Figure 5B). Desmosomal complexes exhibited abnormalities in their 
intermediate filaments (Figure 6A). TJ’s were significantly opened with 

electron dense material occupying the junctional complexes (Figure 
6B-6C). In Figure 7A, a control capillary with minimal caveolar activity 
and a red blood cell devoid of PM in a low pollution dog are seen, while 
in Figure 7B exposed endothelial cells exhibit numerous cytoplasmic 
clusters of nanosized particles in association with increased caveolae. 
An intraluminal red blood cell (RBC) displays numerous nanosized 
particles.

Children’s outdoor time, diet and serum results

The number of hours spent outdoors was significantly different 
between groups, control children spent an average of 5.19 ± 0.91 h v 
3.69 ± 0.79 h in the MCMA cohort (p<0.0001).The nutritional intake 
based on a seven day recall showed no differences in control v Mexico 
City children. When the intake of corn, wheat and rice products was 
analyzed, the control children had a significantly higher intake of 
corn (p=0.009) v MCMA, while wheat and rice showed no significant 
differences. The results of the 5 selected antigens from 47 controls and 

Figure 3: A. Duodenal epithelium from a 6 y old MCMA clinically healthy dog exhibits rarified tissue in the lamina propia (rectangular frame). Notice the epithelial 
architecture is preserved in this segment, but there are gaps between basal cells (arrow). Toluidine blue 1μm thick section x 100
B. Duodenal epithelium from a 7 y old MCMA clinically healthy dog shows breakdown of the epithelial continuity (short arrows) and dilated blood vessels (*) in the 
lamina propia. Toluidine blue 1μm thick section x 100

Figure 4: A. Transmission electron micrograph of a 5y old dog control duodenal epithelium showing an intact brush border and unremarkable enterocytes, and goblet 
cells (GC). TEM x 7290
4B. TEM from a 4y old MCMA dog showing a disrupted epithelium with gaps between cells (GAP), wide spaces occupied by cell debris (DEBRI) and enlarged basal 
cell nuclei (NUCLEI). Goblet cells are marked GC. TEM x 7290
C. TEM from a 5.4 y old MCMA dog showing ample gaps between epithelial cells (GAP) with swollen cytoplasm and vacuolization of basal cells (*).Goblet cells are 
marked GC TEM x 7290
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Figure 5: A. Control epithelium shows intact tight junctions, adherent junctions and regularly aligned microvilli (V) in the intestinal epithelium .TEM x 72,900
B.In contrast, MCMA duodenal epithelium showing an upper TJ and lower desmosomal complexes with segmental discontinuity in their intermediate filament structure 
and a large gap in between cells. TEM x 117,000.

Figure 6: A. MCMA 5y old dog with an asymmetrical adherens junction structure, ill defined borders and accumulation of electron dense material (arrows) TEM x 117,000
 B. A four year old MCMA dog with zonula adherens junctions (arrows) showing focal discontinuity of electron dense material and intercellular widened spaces (>20nm). 
TEM x 117,000
C.MCMA duodenal epithelium showing an upper TJ (short arrow) and lower desmosomal complexes (long arrow) with segmental discontinuity in their intermediate 
filament structure. TEM x 72,900.

Figure 7: . Normal capillary with a red blood cell (RBC) devoid of PM in a low pollution exposed dog. A few caveolae are seen (short arrow) and there is no PM in the 
endothelial cell (EC) cytoplasm. TEM x 72,900
B. MCMA 5.4 year old dog transmission electron micrograph of a blood vessel showing an endothelial cell (EC) with numerous cytoplasmic clusters of nanosized 
particles (short white arrow) on average 28 nm in association with increased caveolae (short black arrows). An intraluminal red blood cell (RBC) shows numerous 
nanosized particles (long white arrows). TEM x 72,900.
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48 Mexico City children, age 11.02 ± 3.6 years are shown in Table 2. 
The two selected cell junction antibodies: occludin-zonulin and actin 
showed significant statistical differences among cohorts for the high 
affinity IgG isotypes, while IgM was significantly increased for actin in 
Mexico City children. Transglutaminases 3 and 6, GAD 65 and cerebellar 
antibodies exhibited high IgG but not IgA isotypes for MCMA children 
and were significantly higher in exposed children. Table 3 shows 
the Pearson’s correlation coefficients and p-values between the cell 
junction, and neural antibodies among Mexico City children. There was 
a striking correlation between cell junction and neural autoantibodies, 
particularly for actin and occludin-zonulin IgG isotypes. Age showed 
no significant correlations with any of the variables. 

Discussion
Disruption of epithelial integrity with structural changes in tight 

junctions (TJ), the major determinant of paracellular permeability, 
characterize the small bowel pathology in Metropolitan Mexico City 
healthy dogs. The integrity of the small bowel epithelial barrier is likely 
compromised as a result of the epithelial TJ disruption. These highly 
exposed dogs’ intestinal findings could be relevant to the increases in 
actin and occludin/zonulin proteins autoantibodies seen in seemingly 
healthy MCMA children. We fully expect that disrupted GI barriers 
will allow for major concentrations of swallowed PM entering the GI 
tract, impacting neuronal enteric populations and reaching the vagus 
nerve. In this regard, PM gaining access through the most vulnerable 

section of the GI tract: the small bowel, will be of deep interest to 
the possibility addressed by Braak et al. [21] and Hawkes et al. [22] 
about an environmental agent passing the GI epithelium and inducing 
abnormal changes in α-synuclein. The presence of abnormal TJ’s and 
brain autoantibodies in urban children with well documented systemic 
inflammation, neuroinflammation and the early brainstem and 
olfactory bulb hallmarks of Parkinson’s disease obligates us to carefully 
look at the importance of the GI tract as a direct pathway to vulnerable 
brain regions. 

The issue of the gastrointestinal route as a direct target and a 
simultaneous pathway for the entrance of air pollutant components 
through a disturbed barrier illustrated in Figure 8 is at the core of our 
concerns for exposed children. An immune-reactive response against 
barrier forming proteins is key to understand air pollutant mechanistic 
pathways affecting epithelial and endothelial barriers, including the GI 
barrier [10,18,40-43]. Ultrafine and fine PM resulting from combustion 
products are rich in organic and inorganic components, including 
heavy metals, benzene, formaldehyde, and endotoxins, and because 
of their pro-oxidative potential and their inflammatory capacity they 
increase the risk for toxicity [41]. Nanosized particles are capable to 
enter cells by an endocytic pathway, can penetrate through cells and 
through tissue resulting in cellular inflammatory reactions and toxicity 
[41]. Thus, in the scenario of sustained lifelong exposures to high levels 
of PM <2.5 μm and <100 nm in diameter [33-35,44] and the capacity 
of PM to cause barrier damage, the presence of an impaired mucosal 

 Control  Mexico City  Comparison   

 Mean SD± Mean SD± p value
% above the % above the 

control mediancontrol mean
OZ  IgA 0.457 0.09 0.602 0.31 0.003 58.3 75
OZ  IgG 0.482 0.15 0.581 0.16 0.003 62.5 68.8
OZ  IgM 0.651 0.31 0.855 0.63 0.05 41.7 56.3
Actin IgA 0.596 0.19 0.679 0.26 0.08 54.2 62.5
Actin IgG 0.822 0.32 1.019 0.36 0.006 68.8 85.4
Actin IgM 0.724 0.22 0.873 0.35 0.016 68.8 68.8
TGM3 IgA 0.506 0.21 0.542 0.24 0.44 50 54.2
TGM3 IgG 0.659 0.22 0.825 0.3 0.002 68.8 70.8
TGM6 IgA 0.443 0.18 0.49 0.23 0.28 47.9 54.2
TGM6 IgG 0.589 0.17 0.736 0.37 0.016 58.3 66.7
GAD 65 IgA 0.406 0.14 0.452 0.17 0.15 50 66.7
GAD 65 IgG 0.578 0.17 0.671 0.2 0.019 66.7 72.9
GAD 65 IgM 0.58 0.18 0.674 0.28 0.05 62.5 62.5
CEREB IgA 0.511 0.17 0.617 0.34 0.06 41.7 54.2
CEREB IgG 0.545 0.23 0.845 0.44 0.0001 68.8 75
CEREB IgM 0.684 0.29 0.915 0.57 0.015 45.8 56.3

OZ=Occludin Zonulin, TGM3=Transglutaminase 3, TGM6=Transglutaminase 6, GAD-65=Glutamic Acid Decarboxylase, CEREB=Cerebellar peptide 
Table 2.  Serum autoantibodies in Controls v Mexico City Metropolitan Area children. Results are expressed in optical density units. Significant p-values are marked in bold. 
Percentages of the MCMA children that showed optical density values higher than the control mean and control median are also shown. 

Autoantibodies 
and isotypes GAD65 IgA GAD65 IgG GAD65 IgM TGM3 IgA TGM3 IgG TGM6 IgA TGM6 IgG CEREB IgA CEREB IgG CEREB IgM

OZ IgA 0.22 (0.13) 0.13 (0.39) 0.28 (0.06) 0.20 (0.18) 0.28 (0.05) 0.29 (0.04) 0.43 (< 0.01) 0.40 (< 0.01) 0.26 (0.08) 0.22 (0.13)
OZ IgG 0.44 (< 0.01) 0.35 (0.01) 0.28 (0.05) 0.31 (0.03) 0.39 (< 0.01) 0.43 (< 0.01) 0.50 (< 0.01) 0.43 (< 0.01) 0.27 (0.07) 0.16 (0.26)
OZ IgM 0.01 (0.93) -0.16 (0.29) 0.31 (0.03) 0.13 (0.39) 0.15 (0.30) 0.08 (0.61) 0.11 (0.45) -0.05 (0.76) -0.08 (0.58) 0.28 (0.06)
Actin IgA 0.72 (< 0.01) 0.38 (< 0.01) 0.48 (< 0.01) 0.67 (< 0.01) 0.57 (< 0.01) 0.76 (< 0.01) 0.64 (< 0.01) 0.52 (< 0.01) 0.01 (0.95) 0.31 (0.03)
Actin IgG 0.43 (< 0.01) 0.54 (< 0.01) 0.34 (0.02) 0.38 (< 0.01) 0.38 (< 0.01) 0.42 (< 0.010) 0.43 (< 0.01) 0.31 (0.03) 0.38 (< 0.01) 0.24 (0.11)
Actin IgM 0.40 (< 0.01) 0.19 (0.20) 0.76 (< 0.01) 0.24 (0.10) 0.25 (0.09) 0.35 (< 0.01) 0.34 (0.02) 0.13 (0.38) -0.05 (0.74) 0.58 (< 0.01)

OZ=Occludin Zonulin, TGM3=Transglutaminase 3, TGM6= Transglutaminase 6, GAD-65=Glutamic Acid Decarboxylase, CEREB=Cerebellar peptide.
Table 3.  Pearson’s correlation coefficients between the neural and cell junction autoantibodies within the group of Mexico City children. The numbers within the parenthesis 
are the p-values for testing the significance of the corresponding Pearson’s correlation coefficient. The significant ones are marked in bold.
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barrier, and autoantibodies against barrier forming proteins are not 
unexpected findings in urban children. 

Although we and others, have shown the nasal/olfactory, alveolar, 
endothelial and the BBB are compromised upon exposure to air 
pollutants [6-7,10,15-18,41] the GI barrier has been a less explored target. 
The GI tract is very important for several reasons: i.e direct ingestion 
of inhaled PM is common after being mobilized up the trachea via the 
mucociliary escalator and the particle size determines whether is cleared 
out by cough or swallowing [45], ii. Large increases in ventilation and 
GI intake of particles occur with increasing activity [46-48], a situation 
that is critical in children with outdoor physical activities in polluted 
environments.Once within the GI tract, PM enters in direct contact 
with luminal components, the mucus layer and the microbiome [20]. 
Very small particles in the nanosized range could gain direct access to 
the blood stream from the GI tract, while others damage the GI mucosa 
and alter the immune function. One critical issue to take into account 
is the vulnerability of the different GI anatomical compartments to PM. 
Indeed, in keeping with Johansson and colleagues [23] review of the 
GI mucus system; the small intestine would be the prime PM target: it 
has a single unattached mucus layer; nanoparticles can have easy access 
to epithelial cells and to Peyer’s patches, affecting immunosurveillance 

and altering epithelial integrity [49-52]. Compelling evidence shows 
that the small intestinal barrier function is immature in neonates, the 
anti-microbial peptide-dependent barrier function is weaker earlier in 
life [53] thus, the PM GI exposure-threat is present starting at birth for 
urban dwelling residents.

MCMA pre-adolescents and adolescents have a very low IgA but 
high levels of IgG against tTG-3, tTG-6, and GAD-65, which is an 
indication of autoimmune reactivity. The production of IgG isotype 
against various proteins (tTG-3, tTG-6, GAD-65) most likely relates 
to the detrimental impact of swallowed particulate matter upon the 
GI barrier, resulting in structural disruption and immune responses. 
These seemingly healthy children have not shown GI complaints and 
the increased burden of illness and use of health care pediatric services 
associated with celiac disease CD [54,55]. Our brain has very complex 
connections to the gut and there is bidirectional communication 
between GI cells and the CNS [56]. We agree with Hadjivassiliou et 
al. [57] that given TG6 is primarily expressed in the CNS, its presence 
obligates to question whether the intestine or the cerebellum primed 
the TG6 response in gluten ataxia. More importantly, TG6 is a protein 
associated with CNS development and motor control and an early 
brain insult and associated inflammation may predispose to future 

Figure 8: Potential mechanisms by which environmental pollutants through the breakdown of epithelial barriers could contribute to the induction of neuroimmune disorders.
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development of TG6 autoimmunity [58,59]. Thus, the critical role of 
TG6 in cortical and cerebellar neurons is very relevant in the context of 
air pollution particularly because we previously reported the presence 
of finger to nose dysmetria, gait deviation and positive Romberg in 
MCMA children of similar age as this cohort [4]. 

Complicating the neural autoimmune scenario, Mexico City 
children also have high titers of antibodies to the enzyme glutamic 
acid decarboxylase (GAD65) associated with the presence of gait 
abnormalities and the Stiff person syndrome, type 1 diabetes, and 
anxiety disorders [60-63]. Autoantibodies to GAD interfere in vitro 
with GABA production and in vivo have negative effects in the entire 
CNS GABAergic system resulting in unbalance of excitatory and 
inhibitory neurotransmission [64-66]. The potential development 
of non-celiac gluten sensitivity in MCMA children is an interesting 
clinical issue.A plausible immunogenic pathway resulting in non-celiac 
gluten sensitivity includes fine and ultrafine PM causing damage to the 
TJ’s at the most vulnerable follicle-associated epithelium protected by a 
single layer of epithelial cells and an easily removable mucus layer, [49] 
followed by an immune response and the production of TJ’s antibodies. 
The breakdown of the barrier could be followed by gluten sensitivity 
and the formation of transglutaminases 3 and 6, GAD 65 and cerebellar 
antibodies. The issue of non-celiac gluten sensitivity (NCGS) in the 
setting of severe PM air pollution has to be entertained even when these 
children do not have CD symptoms [67,68]. 

A critical issue for pediatricians and parents alike should be: 
what is the clinical impact of transglutaminases 3 and 6, GAD 65 and 
cerebellar antibodies in urban children? Neural reactive antibodies 
are present in approximately 2-3% of the general population and most 
researchers will agree they do not usually contribute to CNS or PNS 
pathology [69]. However, it is becoming clear that neural antibodies 
can penetrate brain tissue either early in development or under 
pathological conditions (i.e., BBB damage) [70]. The association of 
neural autoantibodies and pathogenicity with a leaky BBB could be 
very important for highly exposed children [1,7] and as Levin and 
coworkers suggested a “defective BBB allows access of autoantibodies 
to targets on the brain cells” [70]. The major factor determining the 
impact of the brain autoantibodies is the integrity of the BBB, which in 
turn is determining the extent and degree of reactivity and detrimental 
brain responses [69-72]. 

The presence of nanosized PM in small bowel endothelial cells 
deserves a special comment. The endothelial cells showed accumulation 
of single particles and conglomerates measuring  14 to 55 nm [73]. 
Endothelial cells have a higher expression of caveolae in comparison 
with epithelial cells, and the charge and lipophilic characteristics of a 
nanoparticle surface play a key role in their cellular uptake [74]. These 
are interesting observations because small molecular weight antigens 
such as dextran and bacterial LPS enter the lamina propria via goblet 
cell associated passage ways [75]. Internalization of particulate antigens 
i.e., bacterial cell debris and nano PM co-localized with the CD11c+ 
dendritic cells in the lamina propria [75]. Intestinal epithelial cells nano 
PM uptake depends on their size: 20-40 nm NPs are taken up readily, 
while NPs larger than 100 nm are taken up mainly by the epithelial 
cells overlying Peyer’s patches [75]. Thus, nano PM in GI endothelial 
cells in our study falls within the expected size range and we anticipate 
that the chemical composition of nano PM will have an impact on their 
cytotoxic effect. 

Lastly, what is the impact of the GI tract as a portal of ultrafine 
(<100 nm) PM to the systemic circulation and the brain? Is this pathway 

key for the development of the early stages of Parkinson’s disease we are 
already documenting in children? [4,7,8]. The distribution of misfolded 
α synuclein in MCMA children follows precisely the early stages I and II 
of Braak’s PD staging [76,21]. Exposed children have olfaction deficits 
and their olfactory bulbs show misfolded α synuclein [2]. Olfactory 
dysfunction precedes the onset of motor symptoms by years [77] 
and the intranasal administration of neurotoxicants in experimental 
animals supports the olfactory vector hypothesis of Parkinson’s disease 
[78]. We have empirically followed children with severe orthostatic 
hypotension and syncope that could represent the most vulnerable 
children to PD non-motor early effects [8]. The role of the intestinal 
barrier integrity, the intestinal microbiome, the experimental evidence 
showing that different α-synuclein forms can propagate from the gut to 
the brain, and the impact of molecular mimicry in the development of a 
disease for which there is no cure, can not be ignored [79-84].

Looking Forward and Limitations
While recognizing that the evaluation of the TJ’s was done in a small 

number of clinically healthy control and exposed dogs, and the serum 
antibodies in healthy control and exposed children, the results are 
nonetheless important to guide future investigations covering the gaps 
between the increase in TJ’s and neural antibodies and the development 
of Parkinson’s disease in highly exposed children. The significant 
damage to the TJ’s is a major factor for compromising paracellular 
permeability and thus allowing the entrance of bacteria, viruses, toxic 
chemicals and especially nanosized particulate matter [41]. A direct 
impact on the small bowel immuno surveillance capacity is expected 
[50] and the children’s autoimmune responses are critical given the 
formation of brain autoantibodies in the setting of a neurovascular 
unit that is equally compromised [69,85-86]. We fully agree with Levin 
and Diamond groups that in the presence of BBB compromise brain 
autoantibodies might contribute to initiation and/or pathogenesis of a 
wide spectrum of neurological diseases [69,70]. The issue is of critical 
importance in the developing brain because the damage may have short 
and long term detrimental consequences, including the development of 
Parkinson’s disease [7,8]. Since we strongly argue that early dysregulated 
neuroinflammation results in misfolded key brain proteins (i.e., α 
synuclein) as a protective initial response, chronic exposure to air 
pollutants could result in hyperphysiological induction of highly stable 
fibrillar aggregates and neurodegenerative progressive events [87]. We 
fully agreed with Brandenberger et al. [88] that although transmission 
electron microscopy (TEM) is an appropriate technique to use for 
visualizing NPs inside cells, elemental analysis is recommended to 
confirm the presence of NPs inside the cell. 

Summary
Fine tuning of immune-to-brain communication is crucial to 

neural networks proper functioning, thus the evidence of GI barrier 
disruption associated with significant levels of cell junction and 
brain autoantibodies, is a subject of deep concern for urban children. 
There is increasing evidence linking diverse forms of air pollution to 
neuroinflammation and neuropathology seen in Parkinson’s disease, 
including natural exposures of mice to the MCMA environment [9], 
elevated ɑ synuclein in midbrain of mice exposed to high concentrations 
of diesel exhaust particles (DEP) [89] and nanosize DEP activating 
microglia through multiple mechanisms and resulting in DEP-induced 
microglial H2O2 production and loss of dopaminergic neuron function 
[90]. These animal studies and our neuropathology results in children 
and young adults strongly suggest that air pollution exposures may be 
associated with early Parkinson’s disease-like pathology.
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A large body of work on the GI immunosurveillance role, effects 
of disrupted TJ’s in the small bowel, goblet cell responses, small 
bowel mucus properties, GI immunization, brain developmental 
programming, autoimmunity, brain-reactive antibodies and disease 
already exists [25,49-52,69-70,91-97], thus expanding this knowledge in 
the scenario of air pollution pediatric GI effects could greatly facilitate 
our understanding of the downstream mechanisms of the complex 
interaction of antigens and neural targets and to elucidate if the GI 
cell junction lack of integrity are the culprit of pediatric urban diseases 
and carry a future risk for neurodegenerative fatal diseases. Also of 
utmost relevance is the importance of the gut microbial ecology and the 
contributions of non-pathogenic commensal flora to the development 
of CNS-autoimmunity [56,71].

Defining the linkage and the health consequences of the brain/ 
gut/immune system interactions in children chronically exposed to air 
pollutants showing already the early hallmarks of Parkinson’s disease 
ought to be of pressing importance for public health, may provide a fresh 
insight into Parkinson disease pathogenesis and open opportunities for 
pediatric neuroprotection.
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