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Editorial
Climate change impact on agricultural crops is posing serious threat

to global food security. Global climate change models predict increase
in mean air temperature up to 2.6° and 4.8°C by 2065 and end of
twenty-first century, respectively with doubling of current CO2
concentration [1]. Despite of climate change constrains, predictions
were made for increasing global food production by 70% to feed
growing population by 2050 [2]. As a most important cereal crop, rice
feeds more than 3 billion people and its contribution in total calorie
intake in humans is >20%. It is majorly produced and consumed in
Asia where it accounts for 40% to 80% of the calories in the diet [3].
Increase in global mean temperature [1] and unpredicted heat spikes at
regional level [4] are catastrophic to rice yield and quality when
coinciding with sensitive growth stages. In parallel, the sub-tropical
and tropical rice-producing areas are anticipated to be more
threatened by temperature increase [1]. Unprecedented increase in
night-time and day-time temperature is documented for current and
future climate. India is one of the key hotspots for warming in near
future [5]. Increase in day-time temperature during sensitive
reproductive stage could induce poor anther dehiscence, reduced
pollen production, pollen germination and pollen tube growth
resulting in higher spikelet sterility and poor seed set in rice [6-8].
Conversely, high night-time temperature from panicle initiation to
physiological maturity adversely affected rice grain yield majorly due
to reduction in nitrogen and non-structural carbohydrate
translocation after anthesis, which results in poor grain filling [9-10].
Moreover, night-time temperature induced reduction in grain yield in
rice was attributed to increased night respiration, reduced
photosynthesis and total biomass [10,12].

A concomitant rise in atmospheric CO2 concentration with increase
in mean daily temperature due to rapid increase in night-time
temperature (Tmin) than day-time temperature (Tmax) is narrowing the
diurnal temperature amplitude under climate change. Interestingly,
increase in Tmin has been reported to be three times faster over
increasing Tmax. This is resulting in more frequent warmer nights and
decreasing day/night differential (amplitude) in near and upcoming
future [13]. Impact of increasing Tmin and Tmax is documented with
yield penalty in rice. Conversely, elevated CO2 (e[CO2]) has been
known to enhance rice productivity with stimulation in current
photosynthesis and growth rate. However, role of e[CO2] in
combination to high day-time temperature has received attention and
results suggest that high day-time temperature can offsets the e[CO2]
effects and grain quality may be further deteriorated [14-17]. Similarly
role of e[CO2] and high night-time temperature has received attention
too [18]. Elevated [CO2] with a narrowed temperature amplitude
resulting from high day- and night-time temperature are inevitable
combination of current and future climate and requires ample interest.

There are few studies on the thermal amplitude in crops such as wheat
[19], rice [20] and maize [21]. The importance of day/night differential
has received considerable attention in relation to the growth and yield.
It has been reported that plant growth would be favored by low night
temperatures as this would reduce respiratory losses at a time when the
supply of carbohydrate might become limiting. However, dry matter
production for a wide range of crops grown under constant but
optimal temperature is equal to and often greater than dry matter
production by the same crops grown under differential day/night
temperatures with the same mean value. Change in temperature
amplitude from 10°C to 20°C has been reported to reduce growth.
Further, the contribution of the amplitude of daily variation of 15°C
(32.5/17.5°C) could increase carbon-use efficiency in mature leaves
and roots of orange trees, leading to increased leaf area index and
photosynthetic rates compared with 0°C (25/25°C) daily variation [22].
Differential impact of high day- and night-time temperature along
with possible effect of varying amplitude has been advocated [23].
Differential mechanisms leading to high day and high night
temperature stress-induced loss in yield and quality in rice has been
reported recently [24]. Interestingly, there are no reports hitherto on
rice response to temperature amplitude in combination to e[CO2].
Hence, it is of utmost importance to analyze growth, carbon
assimilation and source sink dynamics under varying temperature
amplitude under e[CO2]. The mechanistic understanding on that
under future climate could address the unknown effect of temperature
amplitude under enriched [CO2] environment. Identification of traits
affecting under varying temperature amplitude could be important key
entry points for future studies and making inroads to rice resilience
under future diurnally varying temperature amplitude under e[CO2].
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