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Oral drug absorption is usually dependent on drug’s 
physicochemical properties, formulation design and physiological 
conditions of gastrointestinal tract [1]. It is well known that 
physicochemical properties of drugs, like molecular weight, crystal 
structure, lipophilicity, pKa could generally determine the absorption 
mechanism [2]. Physiological conditions of gastrointestinal tract, 
i.e., expression level of drug metabolizing enzymes (polymorphism),
empty/transit of GI tract, food effect, and drug-drug interaction caused 
by induction or inhibition of metabolism all contributed to the rate 
and extent of oral drug absorption [3,4]. In the last decade, progress 
on transporter studies showed increasingly significance of carrier-
mediated absorption in drug development and clinical applications 
[5,6]. With more understanding of drug transporters, many previous 
puzzles on clinical pharmacokinetics and drug-drug interaction could 
be well explained. Furthermore, targeting on transporters also provided 
unique strategy to improve drug absorption or overcome unfavorable 
absorption barrier. This editorial aimed to briefly outline the major 
transporters and their roles on oral drug absorption, especially to efflux 
transporters.

Passive Diffusion
From mechanism perspective, passive diffusion and carrier-

mediated absorption are the two major absorption pathways. Passive 
diffusion, the most common absorption pathway, can be further 
divided into two categories: paracellular and transcellular pathway [7]. 
In paracellular pathway, many hydrophilic (usually Log P<0) and small 
molecules (usually Mw<200) diffuse through the aqueous pores at the 
tight junctions between intestinal enterocytes [8] whereas lipophilic 
molecules traverse in transcellular pathway. However, it has to be noted 
that paracellular absorption is the minor pathway due to tight junctions 
of enterocytes and much small surface areas compared to transcellular 
pathway [9]. The rate of passive diffusion is mainly determined by the 
physicochemical properties of the drugs. Lipinski’s ‘rules of five’ is a 
well known criterion to evaluate whether the compound has good oral 
absorption [2]. 

Carrier-Mediated Absorption
Based on energy requirement carrier-mediated absorption can 

be divided into facilitated and active transport. Facilitated transport 
follows the concentration gradient without energy expenditure whereas 
active transport requires energy (usually from ATP hydrolysis) and 
can transport against concentration gradient during absorption. For 
example, GLUT (glucose transporter) is the facilitated transporter 
while SGLT (sodium-dependent glucose transporters) is the active 
transporter for glucose transport. Transporters are the gatekeepers for 
all cells and organelles, controlling uptake and efflux of endobiotics 
and xenobiotics. Membrane transporters can be further divided into 
two main classes: solute carrier family (SLC) and ATP-binding cassette 
(ABC) transporters. 

Solute Carrier Transporter
The solute carrier transporters (SLC) contains more than 300 

members with 47 families [10] and they are mainly responsible for 
the uptake (some exceptions of efflux) of amino acids, peptides, 

ions, xenobiotics, endobiotics, sugars and other biologically active 
compounds [11]. Solute carrier transporters are widely expressed in 
various tissues, including intestine, liver, kidney, lung and etc. There 
are compelling evidences that these transporters are involved in drug 
absorption in clinical studies [5]. The most important SLC transporters 
include 1) expressed in the apical side of intestinal epithelia: organic 
anion transporting polypeptide (OATP) family, peptide transporter 
1 (PEPT1), and apical sodium/bile acid co-transporter (ASBT); 2) 
expressed in the basolateral side of human hepatocytes: sodium/
taurocholate co-transporting peptide (NTCP), OATP1B1, 1B3 and 
2B1, organic anion transporter 2 (OAT2), OAT7 and OCT1; 3) 
expressed in the kidney proximal tubules: OAT4, PEPT1, PEPT2, urate 
transporter 1 (URAT1), organic cation/ergothioneine transporter 
(OCTN1, OCTN2) and OAT1, OAT2 and OAT3; 4) expressed in brain 
capillary endothelial cells contributing to the functions of the blood-
brain barrier: OATP1A2 and OATP2B1 [5]. FDA issued guidelines 
for assessing transporter mediated drug interaction for five SLC 
transporters with demonstrated clinical significance: OCT2, OAT1, 
OAT3, OATP1B1 and OATP1B3 [5]. In the recent International 
Transporter Consortium Second Workshop in 2012, MATEs (SLC47A) 
were proposed for prospective investigation in drug development [12]. 

ATP-Binding Cassette (ABC) Efflux Transporters
ABC transporters play a critical role in the development of multi-

drug resistance in cancer cells and it is well accepted that their roles 
are to facilitate efflux of their substrates and to serve as rate-limiting 
step for oral absorption of therapeutical drugs [13]. ABC transporters 
move a wide range of substrates out of cells. The common feature of 
all ABC transporters is that they all consist of the transmembrane 
domain (TMD) and the nucleotide-binding domain (NBD). The TMD, 
embedded in the membrane bilayer, recognizes a variety of substrates 
and undergoes conformational changes to transport the substrate 
across the membrane whereas the NBD is the ATP binding site located 
in the cytosol side. Their substrates include: lipids and sterols, ions, 
small molecules, drugs and large polypeptides. The human genome 
contains 49 ABC genes, which are further classified into seven distinct 
subfamilies from ABCA to ABCG based on sequence and organization 
of their ATP-binding cassette domains [14]. The important ABC 
transporters in human include P-gp (ABCB1), MRP (ABCC), BCRP 
(ABCG2), cholesterol transporter (ABCG5/8) and bile salt efflux pump 
transporter (BSEP). P-gp and BCRP are two ABC transporters that 
FDA requires routine drug interaction assessment [5].
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P-Glycoprotein (ABCB1)
P-glycoprotein consists of 1280 amino acids with molecular weight 

(Mw) of 170 kDa, and its gene name is MDR1, also called ABCB1. 
Humans have two genes from MDR family (MDR1 and MDR3) 
whereas rodents have three Mdr genes (Mdr1a, Mdr1b, and Mdr2). The 
P-gp encoded by human MDR1 and mouse Mdr1a/1b are responsible 
for drug efflux, whereas human MDR3 and mouse Mdr2 encoded 
P-glycoprotein are functional in phospholipid transport [14]. Some 
results also suggest MDR3 P-glycoprotein is able to transport drugs, 
like digoxin, paclitaxel and vinbalstine in addition to phospholipids 
[15]. 

P-gp consists of 12 transmembrane domains and 2 nucleotide 
binding domain. The mouse P-gp crystal structure revealed an inward 
facing conformation that is believed to be important for binding 
substrate along the inner leaflet of the membrane. Additional structures 
binding with two different cyclic peptides revealed poly-specific drug 
binding site and the promiscuous binding pocket of P-gp is lined 
with aromatic amino acid side chains [16]. There are several proposed 
molecular mechanism of transport, including hydrophobic vacuum 
cleaner model, flippase model and phospholipid flip-flop within the 
lipid bilayer, but the in-depth understanding of its mechanism remains 
to be revealed [14]. P-gp is one of the most prevalent efflux transporters 
expressed in multidrug resistance cancer cells and in several organs 
such as intestine, liver, kidney and the blood-brain barrier [17]. P-gp 
plays an important role in limiting the intestinal absorption of its 
substrates in vivo and inhibition of P-gp leads to the improvement of 
bioavailability of orally administrated drugs and therapeutical agents 
[18-21].

In human intestine, P-gp is expressed in apical membrane of 
enterocytes and its mRNA level is highest in jejunum, followed by ileum 
and colon [22]. In contrast, protein level of P-gp in mice is highest in 
colon, followed by ileum and jejunum [23]. In liver, P-gp is highly 
expressed on the canalicular membrane of hepatocytes to facilitate 
the biliary excretion of many P-gp substrates, like daunomycin and 
doxorubicin. 

P-gp has broad substrate specificity, recognizing hundreds of 
compounds including lipids, steroids, xenobiotics, chemotherapeutics, 
peptides, glycosides, biliruin, etc. The molecular weight ranges from 250 
Daltons (cimetidine) up to several thousand Daltons (cyclosporine A). 
Although most of the drugs transported by P-gp are basic or uncharged 
compounds, there are many exceptions [24]. One common feature is 
that most P-gp substrates are hydrophobic and partition into the lipid 
bilayer [24,25]. Other studies have shown that both the lipophilicity 
and number of hydrogen bonds of compounds are the most important 
parameters to be recognized as substrates of P-gp [26]. 

Multidrug-Resistance Associated Proteins (MRPs/
ABCC) 

So far 12 members have been identified in human ABCC subfamily 
which consists of ABCC1 through ABCC12, and nine of them are MRP 
transporters [14]. ABCC1 (MRP1), ABCC2 (MRP2/cMOAT), ABCC3 
(MRP3), ABCC6 (MRP6), and ABCC7 (CFTR) are the larger MRPs 
containing three transmembrane domains (TMDs) whereas ABCC4 
(MRP4), ABCC5 (MRP5), ABCC8 (SUR1), and ABCC9 (SUR2) contain 
two TMDs. MRP2 is one of the most studied transporter among MRP 
family due to well reported clinical significance. It is the largest MRP 
with a MW of 190 kDa and 1545 amino acids. MRP2 is highly expressed 
in various normal tissues, such as the apical side of enterocytes, the 

canalicular membrane of the liver and the brush-border membrane 
of proximal tubule epithelial cells [27-29]. The substrate of MRP2 
includes a variety of drugs such as doxorubicin, mitomycin C, cisplatin, 
5-fluorouracil, etoposide as well as endogenous compounds and 
metabolites [30-32]. Unlike P-gp, MRP2 substrates have been shown 
to include many hydrophilic compounds, i.e., phase II metabolites of 
endogenous and exogenous compounds such as bilirubin glucuronides 
and flavonoids glucuronides. Highly expressed MRP2 in intestine 
and liver may decrease drug absorption and facilitate its excretion, 
consequently cause low oral bioavailability. Other MRP members, like 
MRP3 and MRP4 are located on the basolateral side of enterocytes and 
hepatocytes, and apical side of renal tubular cells. Knockout of MRP3 
and MRP4 was reported to lead low plasma level of glucuronides of 
morphine and bilirubin indicating they are responsible for excreting 
metabolites into blood [33,34]. 

Breast Cancer Resistance Protein (BCRP, ABCG2)
Unlike P-gp and MRP2, BCRP is a half-size ABC transporter 

as it has one NBD at the N-terminus and one TMD containing 6 
transmembrane regions at the C-terminus. There are reports showed 
that BCRP possibly functions as a homodimer [35]. BCRP is not 
only expressed in many cancer cell lines and solid tumor tissues for 
its multidrug resistance function [36], but also expressed in various 
normal tissues, such as the apical membrane of trophoblast cells in 
placenta, the brush-border membrane of intestinal epithelial cells, 
canalicular membrane of hepatocytes and the luminal surface of 
endothelium in brain microvessels [36-38]. BCRP has been reported 
to confer a variety of drugs for multidrug resistance function such as 
mitoxantrone, daunorubicin, doxorubicin, cisplatin, SN-38, topotecan 
and dipyridamole [36,39]. BCRP substrates have also been reported to 
include many phase II metabolites, especially for sulfation conjugates 
[40]. Knockout of BCRP was found to increase the bioavailability of its 
substrates either through improved oral absorption or changed in vivo 
disposition [41,42].

Cholesterol Transporter (ABCG5/G8)
ABCG5 and G8 functions as a sterol efflux heterodimer pump for 

mediating the secretion of sterols from the liver and efflux of dietary 
sterols from the gut [43,44]. As the member of G subfamily of ABC 
transporters, G5 and G8 are also half-transporters and oligomerize 
to form the functional transporter. They are highly expressed on 
the apical membrane of hepatocytes and expressed at low levels in 
the apical membrane of enterocytes in small intestine and colon. It 
has been reported that net cholesterol absorption correlates with 
the expression levels of ABCG5/8 in intestine in mice [45]. Biliary 
cholesterol concentrations were extremely low in Abcg5 Abcg8 (−/−) 
knockout mice when compared with wild-type mice [46]. Similarly, 
plasma level of dietary plant sterols are many fold higher in Abcg8 
(−/−) knockout mice than wild-type mice Expression of Abcg5 and 
Abcg8 were regulated by liver X receptor (LXR), and the inducer of 
LXR, like TO901317 could increase their expression level [47]. 

Bile Salt Export Pump (BSEP/ABCB11)
Bile salt export pump (BSEP), formerly called sister of 

p-glycoprotein, belongs to ATP binding cassette B subfamiliy. It is 
responsible for active transport of bile acids across the hepatocyte 
canalicular membrane into bile, and recently studies showed that it 
can also transport non bile acid substrate, like statin-type drugs [48]. 
In human, BSEP is highly expressed in liver, and also expressed in 
intestine and kidney in a relatively low level [49]. 
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Targeting Transporters to Improve Oral Absorption
The strategies of transporter-mediated prodrugs for oral delivery 

have already achieved successes. Several antiviral prodrugs (i.e., 
Valaciclovir) improved oral bioavailability of the parent drug 
(Aciclovir) by 3-5 -fold via structure modification of prodrug as the 
substrate of PePT1 [50]. The prodrug of ganciclovir, valganciclovir, 
also increase its oral bioavailability through improved binding 
affinity to PepT1 and PepT2 [51]. The rational drug development to 
target high-capacity uptake transporters to improve oral absorption 
demonstrated it is also a viable approach. Extended release of 
gabapentin enacarbil had been approved by FDA, which is the prodrug 
of gabapentin. The mechanism of the prodrug is to target high-capacity 
uptake transporters, monocarboxylate transporter type I (MCT-1) 
and multivitamin transporter (SMVT), instead of the low-capacity 
transporter, L-type amino acid transporter for parent drug [52,53]. 

Specific Inhibitor of drug metabolizing enzymes (CYP3A and 2D6) 
was approved as pharmacokinetic enhancer (cobicistat in Stribild) to 
be administrated concomitantly with other therapeutic drugs for the 
treatment of HIV [54]. Inhibitor of efflux transporters and booster of 
certain uptake transporters have been extensively studied and now in 
clinical evaluation [55]. Although there are no such approved drugs 
yet, the trend of finding potent and safe PK enhancer targeting on 
transporters is continuing.

Reversing Efflux Transport
Efflux transporters play a major role in limiting the intestinal 

absorption of various xenobiotics. Three generations of P-gp 
modulators has emerged to overcome this phenotype. The first 
generation of P-gp inhibitors include verapamil and cyclosporine A, 
but their clinical studies indicated significant toxicity and low potency 
after co-administration with other drugs [56,57], which lead to chemical 
synthesis of the second generations of P-gp inhibitors, like PSC-833. 
PSC-833 is the derivative from cyclosporine A and showed high 
potency with lower but not negligible toxicity. The third generation of 
P-gp inhibitors such as GF120918 and LY335979, showed improved 
potency with minimal pharmacokinetic interactions. Development 
of natural compounds as P-gp inhibitors has emerged in the recent 
ten years [58]. Natural products caught many attentions because of 
potential inhibitory effects on transporters. Natural products such as 
curcumine, ginsenosides and some flavonoids showed significant P-gp 
inhibition effect [40,59]. Most importantly, natural products which 
have been used for long history have much lower toxicity compared to 
synthesized reversing agents. 

In summary, membrane transporters showed significant impact on 
the oral absorption of drugs. With more well established methodology 
and in-depth understanding, targeting on efflux transporters may 
become a viable approach in future although there are many challenges 
ahead.

Footnote

Parts of contents were presented in the dissertation of Dr. Zhen Yang at 
University of Houston in 2012.
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