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Brief History on Transmission of Infectious Proteins in 
Neurodegenerative Diseases

Scrapie, a slowly progressive neurologic disease of sheep and goats, 
was found to be transmissible by injecting healthy animals with extracts 
from diseased sheep [1]. Ensuing studies on transmissibility of scrapie 
into mice [2] or of Kuru, a human neurodegenerative disease, into 
chimpanzees [3-5] strengthened the evidence for the presence of an 
infectious entity in these disorders. Later, it was shown that infectivity 
in spongiform encephalopathy, a neurologic disease of cattle, was 
mainly caused by a proteinaceous agent [5,6]. However, the scientific 
community initially rejected the possibility of the existence of an 
infectious agent that is devoid of any genetic information and it was not 
until 1982 that Prusiner et al. purified and isolated this proteinaceous 
infectious agent and coined the term “prion” [7]. 

Prion protein in physiological cellular form (PrPC) is a cell-
surface glycoprotein which is predominantly arranged in alpha-helical 
sheets, with unknown function. However, in its diseased state, the 
misfolding of PrPC results in a conformationally altered PrP scrapie 
form (PrPSC) with high β-sheet content, which bestows both replicative 
and infectious properties. Although the exact mechanism of prion 
infectivity is unknown, PrPSC demonstrates polymorphic and self-
aggregation propensity [8]. PrPSC aggregates extracellularly by forming 
protease-resistant filaments called ‘amyloid’, which propagate to 
different regions in the brain via repeated cycles of filament elongation 
and breakage [9]. A few mechanisms for this transmission have been 
proposed, such as synaptic or vesicular transport [10]. Furthermore, 
prion proteins demonstrate a unique inter-individual transmissibility, 
being capable of dissemination though saliva, milk, urine, or other 
biological excretes [9,11].

Based on the prion hypothesis, numerous authors proposed that 
other misfolded proteins involved in neurodegeneration, such as tau, 
amyloid-β, or α-synuclein, might be transmissible from cell to cell 
[12-15]. This theory is being fervently investigated in Alzheimer’s 
disease (AD) and in multiple system atrophy (MSA), a progressive 
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neurodegenerative synucleinopathy [16], due to similarities in 
their clinical symptoms with Creutzfeldt-Jakob disease (CJD) [17]. 
Moreover, similar to prion diseases, these disorders are also tied 
to pathological intra and extracellular aggregates: Misfolded tau 
and β-amyloid in AD [18-22] and neuronal and oligodendroglial 
inclusions of α-synuclein in MSA [23,24], hinting at closer similarities 
between these diseases. Recent experimental evidence demonstrates 
that misfolded tau protein exhibits prion-like properties, inducing 
and propagating neurofibrillary pathology in healthy rodent brains 
[25-30]. Particularly, increasing attention is given to factors which 
may play key roles in the seeding and propagation of tau pathology in 
human neurodegenerative diseases.

Spreading of Pathology in Tauopathies - The Inside Story
Misfolded tau protein, a hallmark of human tauopathies, displays 

prion-like features [31,32]. Tau pathology in AD and some other 
tauopathies such as argyrophilic grain disease and Pick’s disease 
initially manifests in the entorhinal cortex (EC) and spreads along the 
hippocampus (HP) to other cortical areas [33-37]. Braak and Braak [33] 
first showed that in AD there is a characteristic progressive hierarchical 
distribution of misfolded tau protein in neuroanatomically connected 
brain areas. More specifically, the initial “pre-tangle” cytoskeletal 
alterations (i.e., accumulation of hyperphosphorylated tau protein) 
may spread from the trans-entorhinal region (anteromedial temporal 
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isocortex), the magnocellular nuclei of the basal forebrain and the locus 
coeruleus to other brain regions [38]. This characteristic spreading is 
also observed in vivo using Tau-PET scans of AD patients at various 
Braak stages [39]. 

In transgenic mice, the tau spreading was successfully recapitulated. 
The pattern of tau spreading follows a synaptically connected circuit, 
which is either monosynaptic (as in the hippocampus) or trans-synaptic 
(as in the cortex) [40]. A transgenic mice model expressing human tau 
in the EC also recapitulates the trans-synaptic spread of tau pathology 
[41].

Besides humans, the intraneuronal accumulation of hyper 
phosphorylated tau has been reported in brains of dogs, Rhesus 
monkeys and gorillas, bisons, rabbits, reindeer, wolverines, bears, 
goats, sheep and cats. Most affected neurons have been identified as 
pyramidal neurons of the hippocampus and entorhinal cortex [42-52]. 
These findings suggest a selective vulnerability of this brain region and 
anatomical conservation of the disease progression in various animal 
species. 

The factors that influence this characteristic spread of tau in the 
brain are less known. Recently, a brain-wide transcriptomic analysis 
from healthy individuals revealed an expression signature in regions 
vulnerable to AD pathology (Braak regions), when compared to non-
Braak regions [53]. These regions displayed elevated expression of 
proteins that co-aggregate with tangles and plaques in AD, such as 
14-3-3ζ, 14-3-3Ɛ, Cathepsin D, etc. Moreover, the levels of proteins 
that prevent aggregation of amyloid and tau, for example, chaperones 
such as HSPA1A, HSPA1B, HSPA1L and GRP78 were lower in 
AD-vulnerable regions when compared to non-AD regions. On the 
other hand, the expression levels of proteins which promote aggregation 
of tau and amyloid, such as Cdc37, GSK3α, GSK3β and FKBP5 were 
good predictors of tissue vulnerability to AD and closely mimicked 
the staging of AD pathogenesis [53]. This study is the first in line to 
investigate the susceptibility of certain brain regions in correlation 
with the Braak staging in the brain, necessary raising the question 
whether transcriptomic levels of certain proteins associated with AD 
pathogenesis are deregulated, how different the proteomic picture is, 
especially considering the array of post-translational modifications that 
are found in AD protein lesions. The post-mortem delay in humans 
prevents the examination of more delicate pathological features. As a 
rodent’s brain can be preserved within minutes of sacrifice, evaluating 
transcriptomic and proteomic pattern in animal models recapitulating 
the spread of tau pathology may provide otherwise unobtainable 
evidence about region-specific changes in the diseased brain.

Tauons and their Infamous Cousins – The Molecular 
Abyss

Intrinsically disordered proteins (IDPs) such as tau, β-amyloid, 
α-synuclein etc. are considered to be key players in the neurodegenerative 
cascade in human neurodegenerative disorders [54]. These proteins 
naturally lack characteristic secondary and tertiary structures unless 
bound to a partner. Another unique property of these proteins is their 
ability to adopt β-structures which contribute to formation of amyloid-
like fibrils [55], alleged to be involved in seeding and aggregation of 
these proteins [56,57]. 

Recently it was shown that a major factor that contributes to 
formation of amyloid-like fibrils is the presence of segments with 
high fibrillisation propensity (HFP) that form “steric zippers”, or 
self-complementary beta sheets, that serve as the backbone for the 
nascent aggregates [58]. These regions are particularly enriched with 
valine (V), isoleucine (I), alanine (A) and serine (S). Aggregation of 
tau protein into PHF is driven by its transition to β sheet structure 
[59]. Based on “PASTA 2.0”, an advanced algorithm for prediction of 
amyloid-like structural aggregation depending on aggregation-prone 
regions (http://protein.bio.unipd.it/pasta2/) [60], we observed that tau 
protein (2N4R; longest tau isoform, 441aa) has 17.69% of sequences 
with potential for beta-strand formation (Table 1). Moreover, several 
HFP sequences are distributed along the length of tau protein, mainly 
in the microtubule binding repeat domain (MTBR), indicating a 
propensity for the formation of prion-like motifs in tau protein. For 
example, aa306VQIVYK311 (based on single letter amino acid code) in 
the third MTBR of tau is identical to a segment globally classified as 
having high beta-sheet aggregation propensity [58]. This sequence is 
known to be involved in assembly of PHF [61]. Another HFP sequence, 
aa274KVQIIN279, is also present in the microtubule binding region of 
tau. Post-translational modifications lead to the structural changes 
of HFP segments that may allow oligomerisation of tau molecules. 
Recently, independent studies on PHFs and straight filaments (SF) 
from AD conclusively demonstrated that the 3rd repeat and 4th repeat 
binding domains of tau occupy the common core of these filaments, 
with mixture of 1st and 2nd repeats [62,63]. These are arranged as eight 
beta-sheet structures with N-terminal ends formed by aa306VQIVYK311 

sequence which complement with aa373-378 residues. In addition, the 
purified fraction of sarcosyl-insoluble tau was successful in seeding 
aggregation in vitro [63]. Put together, this evidence strongly implicates 
HFP sequences in seeding of aggregation and highlights their potential 
for propagation of tau pathology.

It is proposed that these disease-modified tau proteins termed 
“tauons” can undergo self-assembly and aggregate healthy tau protein 

Protein Length (aa) % disorder % α-helix % β-strand % coil
Prion* 246 35.77 26.42 14.63 58.94
Tau 441 62.35 6.58 17.69 75.74

α-synuclein 140 34.28 26.43 22.14 51.43
Amyloid β40 40 30.0 0.0 52.5 47.5
Amyloid β42 42 30.95 0.0 40.48 59.52

TDP43 414 34.05 16.18 21.5 62.32

Using web-based algorithm, PASTA 2.0 (http://protein.bio.unipd.it/pasta2/) for prediction of amyloid structural aggregation, high fibrillation propensity motifs (HFP) were 
identified. Threshold score of -5.0 pasta energy units was set (1.0 Pasta Energy Unit=1.192 Kcal/mol). HFP sequences which are have propensity to form β-sheet structures 
are observed in all intrinsically disordered proteins. The percentage of disorder and percentage of sequences with potency to form α-helix, β-strands and coils are given. 
*partial sequence. aa-Amino acids; Amyloid β40- Amyloid beta 40; Amyloid β42-Amyloid beta 42; HFP- High fibrillation propensity motifs; TDP43- Transactive response 
DNA binding protein 43 kDa; α-helix- Alpha helix, β-strand- Beta strand
Uniprot id: Prion-D4P3Q7; Tau-P10636-8; Amyloid β40 and 42 were obtained from APP-P05067 residues aa688-711 and aa688-713 respectively; alpha-synuclein-P37840; 
TDP 43-Q13148

Table 1: High fibrillation propensity motifs on intrinsically disordered protein.

http://protein.bio.unipd.it/pasta2/
http://protein.bio.unipd.it/pasta2/
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in a non-saturable fashion and spread through the brain, resulting in 
infectivity and disease progression [12]. Tau is plagued by a wide range 
of pathological post-translational modifications, such as truncation, 
hyper phosphorylation and ubiquitination, which promote structural 
misfolding of the protein [12,19,20,64-67]. Along with the presence 
of HFP sequences which allow tau’s aggregation into beta-sheets this 
means that pathologically altered protein tau is an elegant agent for 
initiation and propagation of disease pathogenesis in tauopathies. 

Experimental Seeding of Tau Protein Lead to 
Progression of Pathology to Defined Brain Areas

An early study on transmissibility of AD was performed on hamsters 
which were inoculated with a buffy coat preparation from AD patients 
[68]. These animals developed CJD-like histopathological alterations. 
However, later studies strived to mimic the spreading of tau pathology 
by direct injection of diseased brain extracts from animal models, AD 
or other tauopathies [69-72], mainly into the hippocampus, a region 
highly vulnerable to tau pathology. The initial study after injection 
of insoluble tau (hyper phosphorylated tau) from AD brain into wild 
type rats showed accumulation of amyloid beta, ubiquitin and α1-
antichymotrypsin along with accumulation of tau filaments in these 
animals [69]. However, it was uncertain whether insoluble tau alone 
contributed to the formation of filaments, or whether the accumulation 
of these proteins was due to the presence of other proteins. The research 
groups of Boluda et al. were the first who clearly demonstrated the 
ability of misfolded tau to induce tau neurodegeneration [71]. The 
study showed that the injection of brain extract from tau P301S mice 
line into ALZ17 mice which express a single isoform of human wild 
type tau induced full-blown tau pathology. Prion-like properties of 
human misfolded tau were observed also after inoculation of purified 
tau oligomers from human AD into C57BL/6 mice. However, due to the 
lack of comprehensive immunohistochemical staining this study does 
not represent the final proof of the infectivity of tau oligomers [27]. 

Similar to prions, “tauon” strains are specific for different tauopathies 
[70,72,73]. Misfolded tau isolated from different tauopathies, such 
as argyrophilic grain disease (AGD), tangle-only dementia (TD), 
corticobasal degeneration (CBD) and progressive supranuclear palsy 
(PSP) also induced and drove tau pathology in injected animals [70,72]. 
The morphology of tau inclusions was diverse and identical to their 
respective human counterparts. For example, injection of AD or TD 
material induced the typical neurofibrillary pathology to these diseases 
[70,72]. On the other hand, CBD tau induced glial tau pathology in the 
white matter tracts and hippocampus [72]. Inoculation of AGD into 
ALZ17 mice induced small spherical or comma-shaped argyrophilic 
grains identical to human AGD [70]. Moreover, seeding of tau from 
different tauopathies into the PS19 mouse line also affected the specific 
cell types seen in these human tauopathies i.e., neuronal pathology was 
initiated by AD extracts and predominant oligodendroglial pathology 
by material from CBD [72]. Furthermore, injection of material from 
other tauopathies (AGD and PSP) into ALZ17 mice also resulted 
in lesions similar to these human pathological diseases. However, 
formation or propagation of classical Pick bodies was not observed 
after injection of homogenates from Pick’s disease [70,72]. One of the 
reasons for this selective infectivity could be the absence of a proper 
“sparring partner” in the inoculated organism, analogous to the species 
barrier to prion transmission. We showed that injection of brain extract 
from the transgenic rat SHR24 line, which expresses 3R form of human 
truncated tau, into the SHR72 transgenic rat line, which expresses 4R 
human truncated tau, developed tau pathology at the site of injection, 
but no propagation of pathology to other regions was observed [28]. 

However, administration of misfolded tau from SHR72 transgenic 
rats not only induced pathology in cortical neurons in these animals, 
but also induced neurofibrillary tangles in adjacent brain areas. Since 
the Alz17 line used by Clavaguera et al. [70] and Boluda et al. [71] 
mainly expresses human four-repeat tau protein, the three-repeat tau 
inclusions from PiD lacked the substrate necessary for the propagation 
of pathology. These results clearly show that pathologically altered tau 
protein requires a proper substrate in the target organism in order to 
manifest its infectious and spreading properties i.e., 3R tau or 4R tau for 
the respective tauopathies. The tau isoforms from diseased human or 
rodent brains differ in their specificity and infectivity, which accounts 
for the pathological differences between 3R and 4R tauopathies. 

Most studies on the tau spreading phenomenon have been 
performed on transgenic rodent models; however, few studies have 
investigated the spreading of misfolded tau in wild type mice. Wild 
type animals injected with tau extracts from human P301S mice 
resulted in Gallyas silver and AT100 positive threads and coiled bodies 
at the site of injection [71], but no NFTs or progression of disease 
were observed at 6 and 12 months post-injection. In a later study, 
injection of up to 8 µg of tau protein induced tau pathology, as well as 
spreading in non-transgenic mice [74]. Furthermore, neuropil threads 
and oligodendroglial coiled bodies were observed in wild type mice 
following injection of AD, TD or PSP brain extracts; only astroglial tau 
inclusions positive for AT8 or AT100 were observed post injection of 
CBD brain extracts [70]. A recent study clearly demonstrated that by 
injecting pathological tau extracted from AD, PSP and CBD patients 
into different brain regions of wild-type mice, endogenous mouse tau 
aggregates were inducted and propagated [75]. Interestingly, PSP and 
CBD tau strains induced astroglial and oligodendroglial tau inclusions 
as was shown by Clavaguera et al. [70]. These findings suggest that 
higher levels of pathological tau injected into the brain of wild type 
mice may break the protective barrier of the endogenous mouse tau 
proteome.

Mechanisms of Tau Release and Spreading 
A growing body of evidence strongly supports the notion that 

extracellular tau plays a key role in spreading of tau pathology [76,77]. 
Tau is constitutively released from neurons under physiological 
conditions [71,76-88]. The secretion is multifaceted, involving diverse 
intracellular components such as autophagosomes, Golgi, endosomes, 
ectosomes, lysosomes, microsomes and endoplasmic reticulum [89]. 
In the diseased brain, extracellular tau additionally originates from 
dead or dying neurons as well as a result of active secretion [76,90] 
and yet unknown mechanisms. Therefore, the modes of tau release in 
pathological conditions are constantly being investigated.

Recently, it was shown that synaptic terminals release tau upon 
depolarisation, however, the levels of released tau were higher in 
synaptic terminals from AD brains [91,92]. Calafate et al. [92] 
demonstrated that hippocampal neurons expressing human truncated 
tau K18 (aaQ244-E372) with the P301L mutation develop intracellular 
tau aggregates on exposure to K18P301L fibrils aggregated with 
synthetic heparin. When cultured in a microfluidic chamber, these cells 
triggered tau pathology in non-treated neurons cultured in a distant 
compartment via synaptically connected neurons in the intermediate 
chamber. This process of tau release was also observed in vivo, where 
enhanced neuronal firing increased the release of tau in the rTg4510 
line. Chemo- or optogenetical stimulations of left hippocampi of 
rTg4510 demonstrated enhanced tau pathology mainly in the CA1 and 
CA3 hippocampal neurons in this hemisphere when compared to the 
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unstimulated right hemisphere [92,93]. The depolarisation of synaptic 
terminals from AD brains is enhanced in comparison to control human 
synapses. Moreover, AD synaptic terminals contain tau oligomers 
[94], C-terminally truncated tau along with 20 kDa tau fragment [91], 
which may be released after activation. In addition, tau is reported as 
a key component of tunnelling nanotubes (TNT) which are tubular 
structures that facilitate cell-cell communication under stress [95]. In 
addition, extracellular tau increases the formation of these tunnelling 
nanotubes, therefore aggravating transfer of tau between neurons [95]. 

The presence of extracellular tau in the CSF of AD patients 
and transgenic models strongly advocates that at least a portion of 
extracellular tau (N terminal fragments) may exit the brain [90,96]. It 
was recently shown that mTor activity is involved in tau secretion into 
the extracellular space [97]. On the other hand, tau can be uptake by 
neuronal and non-neuronal cells. HEK293 cells expressing aggregation 
prone tau species produced fibrillary tau aggregated which were 
released into extracellular medium and was seeded in neighbouring 
cells [77]. Moreover, HEK293 cells expressing human mutant P301L 
tau develop intracellular tau aggregates and co-culture of these cells 
with hippocampal neurons induced tau pathology in these neurons 
[93], indicating a possibility transmission of tau pathology from non-
neuronal donor to neuronal cell. Interestingly, the infectivity of prions 
and α-synuclein between distal non-neuronal cells and the brain has 
also been reported [98-100]. It would be interesting to study whether 
similar infectivity of tau is observed in vivo in transgenic models or AD.

In an elegant study by Holmes et al. [101], it was shown that 
the uptake and propagation of tau is mediated by heparin sulphate 
proteoglycans via micropinocytosis. Increased tau propagation was 
observed following down regulation of amphiphysin 2 (BIN1), a 
regulator of clathrin-mediated endocytosis [102]. The sizes of tau fibrils 
or aggregates also play a crucial role in the process of active endocytosis. 
Aggregated full-length tau or truncated tau forms are readily 
endocytosed by neuronal and non-neuronal cells; tau monomers, long 
fibrils or filaments are not [78,81,87]. Put together, the ability to seed, 
induce aggregation and propagate tau pathology in specific cells and 
cell compartments depends on tau conformation, its post-translational 
modification/s and size and involves a complex of known and unknown 
secretory and uptake mechanisms.

The Role of Misfolded Tau in the Seeding and 
Propagation

Various forms of tau protein like fibrils [87,103,104], filaments 
[28,72,105,106] and oligomers [27] or monomers [107,108] display 
different seeding properties despite the difference in the origin of the 
seeding tau protein. Studies also showed differences in propagation 
(brain areas affected, distance of spreading) after injection of 
recombinant tau [87,103,104] or native forms [105,107]. Interestingly, 
tau from human tauopathies brain extracts induced tau pathology 
mimicking the parent neurodegenerative diseases (Table 2). Moreover, 
in most of these cases tau pathology in the form of NFTs, NTs and 
argyrophilic grains were observed. On the contrary, few studies 
only demonstrated presence of hyper phosphorylated tau inclusions 
after seeding of tau from human AD without formation of NFTs 
[27,72,74,106]. In these studies, spreading of tau pathology from site 
of injection was observed. The only exception was extract from Pick’s 
disease, which induced tau pathology only at the site of injection [70]. 

Similarly, various forms of pathological tau protein extracted from 
rodent brain induced tau pathology when injected into the rodent brains 
(Table 2). Majority of the studies showed the presence of mature NFTs 

and NTs in these models [28,71,107]. In a first rat study, we also showed 
the formation of NFTs in cortical areas and striatum after injection of 
insoluble tau isolated from two transgenic rat lines expressing human 
truncated tau [28]. All these studies suggest that the misfolded tau from 
transgenic rodent models display similar seeding potency as human 
misfolded tau. 

In contrast to tau from rodent and human brain extracts, various 
forms of synthetic tau oligomers or filaments did not induce NFTs or 
NTs; however, in all the cases the presence of hyper phosphorylated tau 
was reported [74,103,104,108-110]. Only one study showed NFT like 
tau pathology and presence of conformationally modified tau protein in 
the tau inclusions [103]. Thus, synthetic tau does not fully recapitulate 
the seeding and spreading potency of human or rodent pathological 
tau [111-114].

Finally, Sanders et al. [72] and Kaufman et al. [115] elegantly 
demonstrated the presence of different tau strains in the brain of 
human tauopathies. Isolated tau strains from human tauopathies 
induced different forms of pathological aggregates in HEK293 cells. 
These aggregates were able to induce AT8 positive tangle-like pathology 
if they were injected into the mouse brain. Contralateral spreading of 
tau pathology was also reported in both cases implicating the seeding 
and propagation potency of various strains of misfolded tau. To sum up, 
the ‘tauons’ retain their pathological potential even in cell cultures and 
successfully seed and transmit pathology when reintroduced in brains. 

Although the propagation of tau pathology in the brain is observed, 
less is known about the intrinsic property of tau protein responsible 
for its seeding and propagation. Recently it was shown that the 
conformation of tau protein determines the templating potency and 
assembly into filaments. Interestingly, in vitro heparin induced synthetic 
tau aggregates displayed higher stability to guanidium hydrochloride 
solubility than native sarcosyl-insoluble tau aggregates from TgP301S 
mice. This was attributed to the difference in conformations between 
the two preparations [112]. However, the insoluble tau aggregates from 
TgP301S mice displayed higher potency for seeding when compared 
to in vitro heparin generated tau aggregates. Several other groups also 
report a weak seeding potency of soluble tau [71,109], suggesting that 
insoluble tau predominates as the infectious component of the tau 
proteome in spreading of tau pathology. Apparently, the misfolded 
conformation is encoded more stably in insoluble and/or aggregated 
tau protein and aggregates find it easier to convert and aggregate 
healthy tau protein than soluble pathological tau molecules do. 

Concluding Remarks
Based on evidence from in vitro and in vivo studies, the spread of 

tau pathology displays the following characteristic features:

1) Pathological misfolded tau from a diseased brain can induce 
tau pathology in the brain of transgenic and wild type animals

2) Spreading is a dynamic process which is time and 
dose-dependent and propagates through synaptic connectivity

3) Specific tauopathy brain extracts induced cell tau pathology 
in injected brains and the induced pathology is analogous in 
appearance to the parent tauopathy (AD – neuronal lesions, 
CBD, PSP – astroglial and oligodendroglial lesions etc.)

4) A high amount of tau, of either exogenous or endogenous 
origin, seems to be essential for induction and spread of tau 
pathology in mouse models
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[27] 3 months
C57BL/6 11 months PI

Hippocampus 
A/P-2.06 mm, L ± 1.75 mm, 

D/V - 2.5 mm

AD tau oligomers 
or PHF

0.3 µg/ µl
Total 2 µl

0.2 µl/min

 Injection of tau oligomers: 
Few tau inclusions in the hippocampus, 
corpus callosum, hypothalamus, cortex

Injection of PHF: 
Tau inclusions in the hippocampus (only on 

the place of injection)

[70]
3 months

ALZ17
C57BL/6

6, 12, months 
PI

Hippocampus
A/P-2.5 mm, L+2 mm, D/V-

1.8 mm
Overlying cortex

A/P-2.5mm, L+2 mm, D/V-
0.8 mm

AD, TD, AGD CBD, 
PSP, PiD tau 
Total 2.5 µl

1.25 µl/min

Injection of AD, TD, AGD, PSP, CBD,
 

NFts, NTs, argyrophilic grains and nerve 
cell body inclusions in fimbria, optic tract, 
medial lemniscus, dorsal thalamus, cerebral 

peduncle amygdala, thalamus, internal capsule, 
entorhinal cortex , Fornix

 
 Injection of PiD, 

Short, thick NTs and filamentous tau only in 
injection site

[72] 2-5 months
PS19

1, 3 and 6 
months PI

Hippocampus
A/P-2.5 mm,

L+2 mm, D/V-2 mm
Cortex

A/P-2.5mm,
L+2 mm, D/V-0.8 mm

CBD tau- 50ng, AD 
tau-10.5µg, DSAD 

tau-12.5µg
Total 5.0 µl

NA

Injection of CBD 
AT8 positive tau inclusions in fimbria (also 
tau inclusions positive for MC1, TG3, ThS 
negative), alveus, subcortical white mater, 

neurons in hippocampus CA1, CA3, dentate 
gyrus, subiculum

(predominantly glial tau pathology)
Injection of AD/DSAD 

AT8 positive tau inclusions in the lateral 
septal nuclei, subiculum, entorhinal cortex, 

locus coreuleus, raphe nuclei,ipsilateral CA1, 
dentate gyrus and also contralateral site CA3, 

entorhinal cortex 
(neuronal tau pathology)

Injection of DSAD 
ThS positive tau inclusions in CA3 

[74] 2-3 months 
15-19 months 

WT

2,7 d
1, 3, 6, 9, 
months

PI 

Hippocampus 
A/P-2.5 mm, L+2 mm, D/V-

2.4 mm 
Cortex

A/P-2.5 mm, L+2 mm, D/V-
1.4 mm

AD-tau-0.4 μg/µl 
total 1 μg, and 

1.6 μg/µl 
Total 4 μg/site

NA

AT8 positive tau pathology in 
ipsilateral (positive tau inclusions for MC1, 
TG3, ThS) and contralateral hippocampus, 
entorhinal cortex, locus coeruleus, corpus 
callosum, raphe nucleus, mammillary area

[75] 2-3 months
WT (C57Bl/6)

1, 3, 6, or 9 
months PI 

Hippocampus
A/P-2.5 mm, L+2 mm, D/V-

2.4 mm
Cortex

A/P-2.5 mm, L+2 mm, D/V-
1.4 mm

Thalamus
A/P-2.5 mm, L+2 mm, D/V-

3.4 mm

AD, CBD, PSP tau 
2.5 μl (Hippocampus 

and Cortex)
4 μl (Thalamus)

NA

 Injection of AD, CBD, PSP, 
Tau aggregates in the hippocampus (ventral, 

dorsal), entorhinal cortex, fimbria, corpus 
callosum mammillary area, thalamus, olfactory 

bulb 
 

[106] 3 months
THY-Tau22,

WT
3 months PI

Hippocampus
A/P-2.1 mm, L+1.5 mm, D/V-

2.0 mm

AD tau
0.5 μg/μl 
Total 2 μl 

0.2 µl/min

No NFTs, but Gallyas phospho and 
conformational - dependent tau 

antibodies positive tau inclusions (grains, 
granules,NT,CB) in ipsilateral hippocampal 

hilus, stratum oriens, stratum radiatum, alveus, 
fimbria, corpus callosum

[116]
3 months

hTau tg mice 6, 9, 11 months 
PI

Hippocampus
A/P-2.5 mm; L ± 2.0 mm; D/V-

1.8 mm

AD tau
0.12 μg /2.5 μL 1.25 µl/min

NFTs and NT positive for phospho - 
antibodies and ThS in the hippocampus (CA1, 

CA2, CA3) dentate gyrus), entorhinal cortex, 
amygdala, corpus callosum, neocortex, septal 

nuclei
(AD-P tau-NFTs and NTs 

Dephosphorylated AD-P tau - argyrophilic 
grain-like tau pathology)

[116]

2-3 months
T40PL-GFP tg 

mice
WT

3 months PI
Hippocampus

A/P-2.5 mm, L+2 mm; D/V-
2.4 mm

AD tau 
0.8 μg/μl 

Total 2.5 μl
NA

AT8 positive tau pathology in CA3, 
subiculum, retrosplenial granular cortex, 

dentate gyrus, more cortical tau pathology, 
especially entorhinal cortex,

contralateral and ipsilateral site
(Better seeding tau pathology in WT than in Tg 

mice)
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[28] 2 months
rat lines SHR72 

and SHR24
100-175 d PI

Motor cortex 1
A/P+3 mm, L+2 mm, D/V 

-0.75 mm

 Rat brain extract
(SHR72- 4R tau)

 20 ng/µl 
(SHR 24- 3R tau)

50 ng/µl
Total 2 µl

0.5 µl/min NFTs in cortical areas and striatum 

[71]
3 months

ALZ17
C57BL/6

6,12 and 15 
months PI

Hippocampus
A/P-2.5 mm, L+2 mm, D/V 

-1.8 mm
Cortex

A/P-2.5mm, L+2 mm, D/V-
0.8 mm

Mice brain extract 
(P301S)

Total 2.5 µl
1.25 µl/min

CB, NT and NFTs in the hippocampus, 
fimbria, optic tract, thalamus, internal capsule, 

medial lemniscus, zona incerta, cerebral 
peduncle, hypothalamus, caudate putamen, 
somatosensory cortex, amygdala, superior 

colliculus, substantia nigra, entorhinal cortex, 
visual cortex, mesencephalic nuclei, pontine 
nuclei some brain region in contralateral site

[87] 1 month
rTg4510

4 and 11 
weeks PI

Cortex
A/P-2.5mm, L+/–2 mm, D/V-

1 mm

hTau SFs 
2µg /µl

Total 2.5 µl 
0.5 µl/min  MC1 positive tangles on injection site

[107] 2 months
P301S

1d, 2 weeks,
1 months, 
2 months, 

2,5 months PI

Hippocampus
A/P-2.5 mm, L+2 mm, D/V 

-1.8 mm
Cortex/white matter

A/P-2.5mm, L+2 mm, D/V-
0.8 mm

Mice brain extract 
(P301S)

Total 2.5 µl
1.25 µl/min

NFTs, NTs in the hippocampal formation 
(CA1, CA3, dentate gyrus, subiculum) para-

hippocampal region,cortex (retrosplenial, 
ventrolateral), mammillary nucleus, 

supramammillary nucleus, thalamus (anterio-
dorsal, anterio-ventral), lateral septal nucleus, 

nucleus accumbens

[109] 2-3 months
rTg4510 mice 3 weeks PI

Hippocampus
A/P-2.5 mm, L+2 mm, D/V 

-1.8 mm

Mice brain extract 
(rTg4510)

HMW or LMW tau 
Total 2.5 µl

0.2 µl/min 

Injection of HMW tau
 AT8 positive neurons in ipsilateral dentate 

gyrus
Injection of LMW tau

no AT8 positive neurons 

[114]
10 weeks 
months

TgP301S

10 weeks 
months PI

Hippocampus
A/P-2.5 mm; L+2.0 mm, D/V-

1.8 mm
Cortex

A/P-2.5 mm, L+2 mm, 
D/V-0.8 mm

Mice brain extract 
(P301S)

Total 2.5 μl 
1.25 µl/min

PG5 positive tangle like tau pathology in 
the hippocampus (Ipsilateral, contralateral) 

retrosplenial cortex, mamillary nucleus/

Sy
nt

he
tic

 ta
u 

fib
ril

s

[74] 2-3 months 
15-19 months 

WT

3, 6, 9, 18, 24 
months

PI 

Hippocampus 
A/P-2.5 mm, L+2 mm, D/V-

2.4 mm 
Cortex

A/P-2.5 mm, L+2 mm, D/V-
1.4 mm

Synthetic tau fibrils
1,8 μg/ µl total 4.5 

μg/site 
NA

AT8 positive tau inclusions in ipsilateral and 
contralateral hippocampus 

[103] 2-3 months
PS19

1, 2, 4 weeks
1, 3, 6, 9 

months PI

Hippocampus
A/P-2.5 mm, L+2 mm, D/V-

1.8 mm
Cortex

A/P+0.2 mm, L+2 mm, D/V-
0.8 mm

Striatum
A/P+ 0.2 mm, L+2 mm, D/V-

2.6 mm

Synthetic tau PFFs 
0.02-0.2

 and 2 µg/µl
Total 2.5 µl

NA

NFTs like tau pathology positive for 
phospho, conformational dependent 
antibodies and ThS in ipsilateral and 

contralateral hippocampus, locus coeruleus, 
entorhinal cortex, substantia nigra, thalamus, 

white mater tracts in corpus callosum

[104] 3 months
P301L

2 d, 
1, 2 weeks
1, 2 and 3 
months PI

Hippocampus
A/P-2.5 mm,

L+2 mm, D/V-2.4 mm
Frontal cortex

A/P+2 mm, L+2 mm, D/V-2.7 
mm

Synthetic tau PFFs 
varied 2-5 µl 1 µl/min

Injection into hippocampus 
AT8 and ThS positive tau pathology in the 

hippocampus, cortex above hippocampus and 
piriform cortex 

 Injection into frontal cortex 
AT8 and ThS positive tau pathology in frontal 

cortex, hippocampus, amygdala, thalamus, 
midbrain, brainstem and also to contralateral 

hippocampus, midbrain, brainstem

[110]

2-3 months
T40PL-GFP tg 

mice
WT

3 months PI
Hippocampus

A/P-2.5 mm, L+2 mm; D/V-
2.4 mm

Synthetic tau fibrils 
0.8 μg/μl 

Total 2.5 μl
NA

AT8 positive tangle like tau pathology in 
CA3, subiculum, retrosplenial granular cortex, 

dentate gyrus,
contralateral and ipsilateral site

(less tau pathology in WT than in Tg mice)
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[73] 3 months P301S
WT

3 and 5 weeks 
PI

Hippocampus
A/P-2.5 mm, L ± 2 mm, D/V 

-1.8 mm

Clone 1, 9,10
5 µg/µl 

Total 2 µl 
0.2 µl/min

AT8 positive tangle like tau pathology in 
the hippocampus (ipsilateral, contralateral), 

retrosplenial cortex, entorhinal cortex 
(ipsilateral, contralateral),

ipsilateral subiculum and dentate gyrus

[111] Young PS19
Age NA

4, 8, 12 weeks 
PI

5 weeks PI

Hippocampus
A/P-2.5 mm, L+2 mm, D/V 

-1.8 mm
SC, CP, VC, Hip, Thal, IC 

Exact coordinates NA

 DS1-DS19 strains
5 µg/µl

Total 2 µl
NA

AT8 positive tangle like tau pathology in the 
hippocampus (Ipsilateral, contralateral)

(DS6, and DS9 the most potent tau strains in 
seeding AT8 positive tau pathology in all 

injected regions)

Table 2: Overview of in vivo studies on propagation of tau pathology in rodent models.

5) The spreading of tau pathology in the brain of rodent models is 
a combined process involving injected human/rodent tau and 
misfolding and aggregation of endogenous tau

6) Most importantly, the induction and propagation of misfolded 
tau requires the presence of proper substrate, or “sparring 
partner” for template-mediated conversion, namely 3R or 4R 
tau for respective tauopathies respectively.

In conclusion, the variable infectious potential of tau strains 
depends on the origin of the seed protein, its post-translational, 
conformational and morphological state. Moreover, the difference in 
ability to induce a pathological process confirms the existence of various 
tau strains or “tauons” in diseased brains [12,113]. Major questions that 
yet remain to be thoroughly understood are the mode of propagation of 
pathology and how tau aggregates from one neuron drive aggregation 
and fibrillation in another neuron. Although some mechanisms of 
secretion have been identified (synaptic, exosomal, or vesicular) and a 
few other mechanisms of secretion and spreading have been speculated, 
a clear picture of the role of various cell compartments and cell types in 
propagating tau pathology is missing. 

Although prion-like transmission of tau protein is widely being 
investigated in mouse models, some argue that tau protein cannot 
behave like a genuine prion [114]. This is mainly due to the fact that 
prion diseases are transmitted from animals to humans or humans 
to humans. Interestingly, cadaver-derived human growth hormone 
containing neurodegenerative disease-associated proteins such as 
tau, Aβ and α-synuclein when injected into humans did not show any 
risk for Alzheimer’s disease or Parkinson’s disease in these recipients 
indicating the lack of transmissivity properties in these extracts 
[115,116]. This may also be due to the lack of potential seeding 
strains of tau or other proteins in these extracts or due to the lack of 
required incubation period for the disorders to manifest and mature. 
Therefore, elaborate studies are required to thoroughly address the 
discrepancies in human to human transmission of tauopathies using 
similar approaches. However, documented in vitro and in vivo evidence 
on cell lines and rodent models universally supports the seeding and 
propagation of misfolded tau. Future studies will define the nature of 
the tau seed in different tauopathies and delineate the various models 
of tau transmission in the diseased brain. 

Using Future Applications of Humanise Models
The usefulness of the above findings becomes clear when one 

considers the root cause of many development failures in AD drug 
research: inappropriate models. To illustrate, some drug research in 
AD is conducted on toxin-based models; in these models, toxic lesions 
to the hippocampus produce a phenotype dominated by learning 
disability, overtly AD-like. Yet, the brains of these models contain 
neither tau nor amyloid pathology and thus are utterly unsuitable for 
the development of disease-modifying therapies that would halt the 

progression of these pathologies. In contrast, models based on the 
spreading of injected material are very faithful to the human disorder: 
the pathology is induced and driven by genuine pathological tau from 
human tauopathies, progresses as in humans and the conformation-
based nature of tau protein seeds means that the pathology induced in 
the animals retains important molecular characteristics. Models with 
such human-like pathology constitute an excellent tool for the study of 
therapeutic and diagnostic candidates, with increased predictive value 
for subsequent human studies and therapeutic development. Similarly, 
generating genuine tau pathology in animals makes them excellent 
screening platforms for novel tau PET ligands and may be helpful in 
selection of tau ligands dedicated for various human tauopathies.

A potential shortcoming of spreading-based models is the increased 
variability, which arises from the interaction of inter-individual variability 
of the model animals and inter-individual variability of donors of tau 
seeding material; this has to be overcome through rigorous characterisation 
of the injected tau seeds and through an increased understanding of what 
makes a particular tau strain a strong seed.

To sum up, beside the scientific value, the rodent models of human-
like tau spreading open up previously unavailable vistas for the effective 
preclinical development of novel drugs and diagnostic tools.
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