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Abstract

Vascular calcification (VC) and cardiac valve calcification (CVC) are the important causes to increase the risk of
cardiovascular events in terms of chronic kidney disease (CKD) patients. Once VC and CVC considered a passive
form of dead or dying cells, it has now emerged as a pathology results from an active and highly regulated cellular
process. Recently, mechanisms of VC have been further elucidated and many of the pathways involved could be
amplified in CKD patients. In particular, FGF-23/Klotho axis, Wnt pathways, PI3K/Akt signaling, P38MAPK signaling
pathway, and microRNAs have been shown to be impaired among patients with CKD and could play a role
during vascular calcification. Furthermore, risks for CVC in CKD patients and molecular mechanisms related to it
were verified by several researchers. The scope of the present review is to summarize the risk factors and
pathophysiological mechanisms potentially involved in the link between CKD and the progression of VC and CVC.
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Introduction
Progression of chronic kidney disease (CKD) is associated with a lot

of serious complications, including cardiovascular events which are the
main cause of death in CKD patients [1]. Vascular calcification (VC)
and cardiac valve calcification (CVC) are major causes of
cardiovascular events [2,3]. Compared with the non-CKD population,
the risk of vascular calcification or CVC in CKD is much higher than
that in non-CKD, uncommonly increasing the chances of sudden
death [3,4].

VC in CKD patients has two different but overlapping arterial
pathologies: atherosclerosis and arteriosclerosis. The characteristics of
atherosclerosis are lipid-laden plaques which limited to the tunica
intima of the arterial wall, leading to vascular inflammation,
thickening, as well as calcification [5]. Arteriosclerosis, known as
medial arterial calcification, is accompanied by vascular fibrosis,
thickening and stiffening, frequently contributing to left ventricular
hypertrophy [6]. Heart valve consists mainly of valve endothelial cells
(VECs) and valvular interstitial cells (VICs). Calcification of the valves

is mainly due to endothelial dysfunction, leading to interstitial cells
loss and differentiation [7].

In this manuscript, we review the regulation of vascular and cardiac
valvular calcification. We highlight mechanistic insights into
mechanisms of VC and CVC and afford risk factors of CVC, which
may provide the foundation for novel therapeutic approaches to treat
vascular and cardiac valvular calcification in CKD.

Vascular Calcification Signaling in CKD

FGF-23/klotho axis
Fibroblast growth factor 23 (FGF-23), a bone-derived hormone, is

located at 12p13 in humans, containing 251 amino acids protein
(molecular weight=30 kDa), and it was widely considered as an
important role in vascular changes [8,9]. Klotho, a part of klotho/FGF-
receptor complex, was first described by Kuro-o et al. and then it began
to be a vital part in health and disease [8,10-12]. It encodes a single-
pass trans membrane klotho protein involved in cardiovascular
disease, such as atherosclerosis and VC and expresses at high levels in
renal distal tubular epithelium, and to a lesser extent in the parathyroid
gland and human vascular tissue [12,13]. The membrane klotho
interacts with fibroblast growth factor receptors (specially FGFR1) to
form a high-affinity for FGF-23 to maintain the mineral homeostasis
by inducing phosphate excretion into the urine and reducing the level
of serum 1,25 (OH)2D3 [14,15]. However, the expression of klotho
gene in kidney is located in the distal tubule, renal phosphate
reabsorption mainly occurs in the proximal tubule. Thus, how FGF-23/
klotho axis decrease phosphate resorption in the proximal needs to be
further studied.

It has been demonstrated that high level of FGF-23 in vascular
smooth muscle cells (VSMCs) and CKD which was related to the
progression of artery calcification score independent of serum
phosphorus level [16,17]. FGF23 is also associated with endothelial
damage to the arteries especially in CKD [18,19]. Further studies
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showed that active vitamin D and its analog against VC can be
mediated by decreased FGF-23 and increased klotho expression
independent of serum parathyroid hormone (PTH) level [20,21]. CKD
is a state of vascular klotho deficiency promoted by chronic circulating
stress factors, including pro inflammatory, uremic, and disordered
metabolic condition, which can potentiate the development of human
artery calcification and mediates resistance to FGF-23 [22,23]. Some
people suggest that soluble klotho ameliorates VC by enhancing
phosphaturia, preserving glomerular filtration and directly inhibiting
phosphate uptake by vascular smooth muscle [23]. However, Cha et al.
demonstrated that secreted klotho protein activates transient receptor
potential vanilloid-5, responsible for calcium reabsorption in kidney,
which can induce vascular calcification [24]. Thus, the relationship of
klotho and vascular calcification remain unclear.

Canonical and non-canonical Wnt pathways
The Wnt pathways are a group of signal transductional pathways,

which consist of the canonical Wnt pathway and the non-canonical
Wnt/calcium pathway [25]. Canonical Wnt signaling pathway is
activated when Wnt ligands (i.e. Wnt1, Wnt3a) bind to its receptors
cell-surface Frizzled (FZD) and low density-lipoprotein-receptor-
related protein 5/6 (LRP 5/6) [26,27]. The activation of FZD/LRP 5/6
receptor complex leads to the inactivation of GSK-3b, and then β-
catenin accumulate in the cytoplasm and trans-locate to the nucleus
where β-catenin can heterodimerize with members of the lymphoid
enhancer factor/T-cell factor family of transcription factors to induce
the expression of specific genes [26-28].

Accumulating evidence has demonstrated that Wnt signal pathways
are involved in vascular lesions, including endothelial dysfunction and
migration, trans differentiation of VSMCs, and VC [29,30]. Wnt
signaling is involved in high-phosphate and bone morphogenetic
protein 2 (BMP-2) induced VSMC calcification [31,32]. We have
demonstrated that increased expressions of β-catenin, GSK-3β and
Wnt-5a were observed in the calcific area of VC in end-stage renal
disease (ESRD) patients and the logistic regression analysis indicated
that Wnt-5a was an independent risk factor for vascular calcification in
patients with ESRD [31]. Furthermore, PI3K/Akt has the ability to
activate β-catenin signaling pathway by cross-linking MAPK signaling
pathway to induce VC with CKD [33]. MAPK signaling pathway is a
critical pathway which mediates eukaryote signal transmission and
plays a crucial role in osteoblast differentiation and mineralization of
VSMCs. Recent study reveals that P38MAPK can regulate canonical
Wnt-β-catenin signaling pathway by inactivation of GSK-3β in brain,
thymus gland and spleen [34]. However, whether this pathway can be
involved in calcification needs to be further studied.

PI3K/Akt signaling
Phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is

involved in inflammation, hyperphosphatemia and oxidative stress
induced VC with CKD [35-37]. Okazaki et al. reveals that PI3K/Akt
plays an inhibitory role in the inflammatory mediators (IM) including
interferon-gamma, tumor necrosis factor (TNF)-alpha induced human
VSMC calcification [38]. IM-induced alkaline phosphatase (ALP)
activity in human VSMC can be attenuated or enhanced by wild-type
or dominant-negative Akt respectively, and suppression of Akt with
small interfering RNAs (siRNA) significantly reinforce ALP expression
[38]. Hyperphosphatemia is a major risk factor for VC and
cardiovascular mortality in CKD patients. Inorganic phosphate has
been demonstrated to induce apoptosis and ostoblastic differentiation

of VSMCs, resulting to the development of VC through inhibiting
gas6/Axl/PI3K/Akt pathway [39]. Patients with CKD are exposed to
enhanced oxidative stress as a result of increased pro-oxidant activity
and decreased anti-oxidant activity. This oxidative burden augments
gradually with the development of CKD and plays a crucial role in the
progress of apoptosis and osteoblastic differenration of VSMC with
CKD [40]. Byon et al. first discovered that exogenous H2O2 induced
calcification of VSMCs through modulation of Runx2 by PI3K/Akt
signaling, and inhibition of PI3K/Akt signaling blocked VSMC
calcification and Runx2 expression concurrently [41,42]. Furthermore,
xanthine oxidase induces VSMC calcification through PI3K/Akt
signaling pathway [43].

P38MAPK signaling pathway
MAPK signaling pathway is a significant transduction pathway

which participate in various cell physiological and pathology process
including growth and differentiation. It mainly consists of four
pathways covering ERK, JNK, P38MAPK, and ERK5/BMK1 [44].
Among those pathways, P38MAPK is considered to be closely related
to VC with CKD. P38MAPK is mainly involved in hyperphosphate and
oxidative stress induced VSMC calcification with CKD. CKD rats
treated with Ca/P/VitD developed medial calcification of thoracic aorta
where reactive oxygen species (ROS)-sensitive P38MAPK signaling
was activated [45]. Inhibition of P38MAPK by inhibitors or siRNAs
reduced Ca level and ALP activity in human SMCs treated with high
Pi. Oxidized low density lipoprotein and advanced glycation end
products (AGEs) are two kinds of oxidative stress products, which
increased in the serum of CKD patients. Results from in vitro studies
demonstrated that they can mediate VC via P38MAPK signaling
pathway and the effect of AGEs can be suppressed by P38MAPK
inhibitor [34,46].

MicroRNA
MicroRNAs (miRs) are small noncoding RNAs which regulate

target gene expression via mRNA degradation, translational repression
or mRNA alteration to influence cellular functions including
proliferation, differentiation, and apoptosis [47-50]. Several studies
have identified that miRs are associated with VSMC calcification.
MiR-125b was down regulated in calcified aortas from apoE knockout
mice, and its mimics can inhibit calcification of rat aortic SMCs
cultured in high-phosphate medium [51,52]. MiR-30b and miR-30c
were shown to be down regulated by BMP-2 in vitro, and the
expression of miR-30b was also down regulated in calcified human
coronary arteries [53]. Low miR-29 a/b expression was shown on
calcific aortas from mice as well as on CKD patients [54].

Levels of miRNA-135a, miRNA-762, miRNA-714, and miRNA-712
were found to be higher in klotho mutant mice of VC than wild-type
control, and their high levels were confirmed in VSMCs treated with
calcium and inorganic phosphate [23,55]. The calcium efflux proteins
NCX1, PMCA1, and NCKX 4 have been identified as potential targets
of these miRs and inhibiting all four at the same time decreased
calcium content by 30% by potentially reducing intracellular calcium
loading [56]. The targets of miR-223 (Mef2c and RhoB) are known to
play a role in VSMC contractility and differentiation, which is also
involved in high phosphorus induced VSMC calcification [57].
MiR-221 and miR-222 were down regulated and act synergistically to
induce calcification through cellular inorganic phosphate and
pyrophosphate levels [58].
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Accumulating evidence has confirmed that extracellular matrix
vesicles contain non crystalline calcium and phosphate, as well as other
factors related to VC, such as miRs [55,59]. RNA-seq analysis
identified several miRs synthesized and packaged by porcine adipose
tissue-derived mesenchymal stem cells, including miR148a,
miR532-5p, miR378 and let-7f, enriched in matrix vesicles [60,61].
MiR-143/145 cluster can target myocardin or Kruppel-like factor-4 to
mediate high phosphate-induced transition of SMCs to osteogenic cells
[62,63]. It has also been reported to be involved in SMCs phenotype
switch when SMCs were cultured with endothelial-derived vesicles
[64]. In a study of 90 patients with CKD stage 3-4, circulating levels of
miR-125b, miR-145 and miR-155, which target Runx2 and myocardin,
decreased compared to those in healthy volunteers [65]. Other
investigators found level of miR-15b decreased in 30 CKD patients and
it was correlated positively with estimated glomerular filtration rate
and negatively with phosphate levels [66]. Taken together, miRs in
vesicles and its circulating form are also important for VC in CKD.

Risk Factors and Mechanisms of CVC in CKD

Dysregulation of phosphate and calcium
PTH, klotho, 1,25-(OH)2D3 and FGF-23 are basic regulators of

calcium-phosphorus homeostasis. Most of the dietary phosphate can
be absorbed by the gastrointestinal tract [67]. In the proximal tubules
of kidney, PTH and FGF-23 increase phosphate excretion via the
sodium-phosphate co-transporters. Meanwhile, klotho directly
increases phosphaturia without FGF-23 [68]. 1,25-(OH)2D3 promotes
intestinal phosphate absorption and also regulates PTH and FGF-23
[69]. Adeney et al. stated that serum phosphorus level is positive
associated with VC by testing 439 CKD 3-4 stage patients and found
that aortic valve calcification rate increased 33% while mitral valve
reaching 62% when serum phosphorus increased 1 mg/dl [70]. When
eGFR of CKD patients <60 ml/min, hyperphosphatemia happens, and
high serum level of FGF-23 and PTH present in return to increase
phosphate excretion. FGF-23 also reduces the activity of vitamin D by
inhibiting 1α hydroxylase directly [71]. In addition, increasing FGF-23
promotes left ventricular hypertrophy process, and then accelerates the
deterioration of renal function in a vicious circle [72]. Besides,
hyperphosphatemia can stimulate endothelial cells and then release
endothelial microparticles, leading to inflammation and endothelial
cell apoptosis [73]. Most CKD patients undergoing dialysis are
accompanied with hypercalcinemia, especially at the condition of
application with calcium-containing phosphate binders. Patients with
CKD always suffer from secondary hyperparathyroidism and high
PTH increase intracellular calcium ion concentration, leading to
mitochondrial oxidative stress and reducing ATP synthesis, which
causes cell death, apoptosis and ectopic calcification [74].

Diabetes, hypertension and lipid metabolism disorders
Clinical studies have shown that vascular calcification rate is high

for diabetics and the valve dysfunction for them presents a more
serious condition [75]. The human cells including endothelial cells can
be injured by the high blood glucose and carbohydrate metabolic
products such as AGEs which can activate multiple signaling pathways
(e.g. PI3K and JAK/STAT) and downstream factors (e.g. RANK) [76].
The hypertension incidence was about 70% among the investigated
patients with CKD in China and the control of blood pressure was
unsatisfactory [77]. The vasospasm contraction and endothelial
dysfunction caused by hypertension can affect the synthesis and

secretion of the vessel dilators, and thus making the endothelial-
dependent vasodilator response system worse [78]. The pathological
studies of aortic valve diseases demonstrated that lipidosis and
inflammatory infiltration are the most obvious pathological
characteristics [79]. Therefore, hyperlipemia, hypertension and
diabetes can cause the endothelial dysfunction and further promote
valvular and vessel calcification.

Inflammation and oxidative stress
Inflammation and ROS are two common conditions associated with

CVC in CKD patients. Inflammatory cytokines, such as the
interleukin-6 (IL-6) superfamily and TNF superfamily, and
inflammation-related transcription factor NF-κB, have been reported
to promote calcification in cultured VICs, VSMCs, or experimental
animal models [80]. Leskinen et al. showed that IL-6 level is the risk
factors for valvular calcification in CKD patients [81]. Furthermore,
TNF release may trigger the Wnt signaling pathway, resulting CVC
[82]. Miller et al. demonstrated that patients with calcification of aortic
valve has high hydrogen peroxide content when compared with
normal group, indicating that hydrogen peroxide mediated oxidative
stress may play an important role in CVC [83]. Other researches have
shown that hydrogen peroxide can directly stimulate nuclear binding
factorα1 (Cbfα1) and BMP2, thereby stimulating the differentiation of
VICs into osteoblast-like cells [84].

Endothelial-to mesenchymal transition
In the early 1920s, Johannes Holtfreter defined the epithelial and

endothelial-to mesenchymal transition (EMT/EndMT). It was found in
the process of CVC [85]. In the early stage of valve calcification, the
lesion accumulated with abundant sub endothelial lipids and
extracellular matrix which can cause differentiation of VICs into
osteoblast-like cells, one form of EndMT, as the disease worsens [86].
When EndMT occurs, calcium mucin mediated cellular interactions,
reducing the EC differentiation. At the same time, the gene regulation
of muscle fiber mother cell program is activated and differentiates into
the osteoblast. BMP-Wnt-β-catenin pathway promotes EndMT by
changing valve substrate environment, while VEC promote the
occurrence of EndMT by increasing the expression of TGF-β family
and activate the β-catenin pathway [87]. When EndMT happens, more
VIC differentiates into osteoblast and the differentiation degree is
directly related to calcification.

Fetuin-A
Fetuin-A is a calcium-binding glycoprotein present at high

concentrations in human blood. Studies have shown that low level of
serum fetuin-A is associated with aortic calcification, increasing
cardiovascular mortality in patients with CKD [88]. Serum fetuin-A
can inhibit mineral deposition by combining with minerals such as
Ca2+, PO3+ forming particles which can be removed by reticulo
endothelial circulation system, inducing CVC [89]. In addition, BMPs
and TGF-β are suppressed by fetuin-A, reducing the effect on
promoting calcification [90].

Matrix Gla protein
Matrix Gla protein (MGP) is an extracellular matrix protein isolated

from the bone. It was the earliest calcification inhibitor which was
discovered. The specific mechanism of MGP is still unclear in CKD.
MGP can directly combine with hydroxylapatite and inhibit BMPs
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[90]. MGP contains vitamin K dependent gamma carboxyl glutamic
acid (GLA) residue, which has high affinity to the calcium ions and
thus to prevent calcium deposition [91]. Because MGP is vitamin K
dependent, clinical research demonstrated that patients with CKD and
subclinical vitamin K deficiency have a high risk of CVC [92].

RANK/RANKL/OPG
There are three key elements that influence CVC: receptor activator

of NF-kB (RANK), receptor activator of NF-kB ligand (RANKL), and
osteoprotegerin (OPG). RANK, a type I membrane protein on the
surface of osteoclast cells, is involved in osteoclast cell stimulation
when bound with RANKL, and OPGL compete with RANKL
inhibiting the activity [93]. In addition, lots of evidence suggests that
the RANK/RANKL/OPG triad is involved in bone metabolism and
may be important in CVC. Additionally, RANKL/RANK signal can
also affect osteoclast activity. OPG protect bones by prevented the
binding of RANKL and RANKL receptor ligand, resulting in inhibition
of osteoclast differentiation, and preventing excessive bone
reabsorption. Therefore, the ratio of RANKL/OPG is an important
factor in CVC. RANK/RANKL promotes calcification while OPG
inhibits calcification.

Wnt signaling
Wnt signaling pathway can adjust physiological bone formation. In

CKD condition, pathological bone reabsorption triggers Wnt signaling,
promoting osteogenesis and valvular calcification. Recent evidence
suggests that Wnt signaling pathway related inhibitors which
strengthen the function of osteoclasts and inhibits valvular
calcification [94]. However, the function of Wnt signaling in bone
formation and calcification is still poorly understood and underlying
mechanism has not yet been well characterized.

Conclusions
Many patients with CKD have vascular or valvular calcification,

which influence patients’ survival rate seriously. Currently, there are
very limited options for either the prevention or treatment of vascular
or valvular calcification in CKD. Despite the fact that much insight has
recently been gained into the mechanisms of ectopic calcification,
further investigation and comprehension of this complicated process
are still needed, especially for the interaction between VECs and VICs
and their regulatory mechanism in the development of valve
calcification. Only with better understanding of the pathophysiology of
vascular and valvular calcification, will we find more effective
therapeutic options for CKD patients.
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