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Introduction
Multiple sclerosis (MS) manifests as inflammatory, demyelinating 

central nervous system (CNS) lesions. The harsh lesion 
microenvironment does not support the successful remyelination of 
damaged axons. Acute lesions that are capable of limited remyelination 
ultimately progress into chronic lesions that are incapable of 
remyelination altogether [1,2]. This failure has been attributed to a 
depletion of oligoprogenitor cells (OPCs), cells capable of generating 
new oligodendrocytes [3,4]. While current MS therapies succeed in 
slowing disease progression, no therapy specifically targets this process 
of nerve regeneration. Neural stem/progenitor cell (NPC) therapies 
may be able to fill this gap as they are capable of differentiating into 
mature oligodendrocytes [5]. However, our limited understanding of 
the growth factors required for NPC differentiation has slowed the 
development of these therapies. 

The observation that neurotrophic factor expression is required for 
CNS development highlights the potential role that this peptide family 
plays on NPC physiology [6,7]. Brain-derived neurotrophic factor 
(BDNF) and platelet-derived growth factor AA (PDGF) are two such 
factors that are required for the development of CNS connections and 
have also been implicated in MS progression. For example, BDNF levels 
positively correlate with response to interferon-beta treatment [8,9] and 
macrophages - cells present in the lesion microenvironment - release 
PDGF-AA in response to inflammatory stimuli [10]. Furthermore, 
PDGF-AA levels in the CSF decrease with disease progression [11], 
and large numbers of cells expressing the PDGF receptor α (PDGFRα) 
are present in MS lesions [12,13]. Recent studies have also highlighted 
the potential that these factors have in promoting remyelination in 
vivo. BDNF promotes repair/remyelination in a model of spinal cord 
transection [14] as well as experimental autoimmune encephalitis 
(EAE) [15,16] and PDGF injection produces a better remyelination of 
inflammatory lesions [17]. Thus, identifying the mechanisms by which 

these two factors work may lead to insight into how to better manipulate 
the MS microenvironment to promote remyelination.

Many of the investigations looking into the mechanism behind 
these factors have been done as described in vivo, as well as embryonic 
NPCs [18,19] or OPCs [20] in vitro. The observation that NPCs are 
present at high levels in active, inflammatory MS lesions raises the 
question as to how BDNF and PDGF specifically influence post-natal 
NPC physiology as these cells form the population that differentiates 
into OPCs and ultimately mature oligodendrocytes [21]. Therefore, 
this study investigates the interactions of BDNF and PDGF on NPC 
physiology. We demonstrate that BDNF and PDGF-AA do not induce 
NPC proliferation or protect against apoptosis. Both factors induce 
NPC differentiation into the neuronal and oligodendrocyte lineages in 
a time dependent manner.

Materials and Methods
Isolation of murine neural progenitor cells (mNPCs) and cell 
culture

Dr. Jeffrey Spees at the University of Vermont College of Medicine 
Stem Cell Core Facility isolated mNPC’s from postnatal day four C57/
BL6 mouse brains as previously described [22]. Progenitor cells and 
neurospheres were cultured in the following “complete medium:” 
Neurobasal-A media (Invitrogen, Carlsbad, CA) with B27; 10 ng/mL 
epidermal growth factor (EGF); 10 ng/mL basic fibroblast growth 
factor (FGF); 2 mM L-glutamine, 100 units/mL penicillin; 100 µg/mL 
streptomycin. NPCs (passages 2, 4 and 5) were cultured on poly D-lysine 
and laminin coated plates. For all experiments, NPCs were grown to 70-
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80% confluency in complete media (CM, described above), then rinsed 
with EBSS to remove any growth factors, and then treatments were 
added. Treatments (PDGF-AA or BDNF) were performed in minimal 
media (MM), which is CM deprived of growth factors EGF and FGF. 
EGF and FGF stimulate stem cell proliferation to maintain NPCs in 
the proliferative, non-differentiated state; thus removing them from the 
media allows us to determine the influence that the specific treatment 
has on NPC proliferation/differentiation.

Reagents 

PDGF-AA (Peprotech) was reconstituted in .1% BSA and treatments 
occurred at 10ng/ml or 50ng/ml. BDNF (R&D) was reconstituted in 
.1%BSA and treatments occurred at 10ng/ml or 100ng/ml.

Cell proliferation: mNPC growth curve: 50-100,000 cells were 
plated onto each well of a 6 well-plate. Every 24 hours, one well would 
be counted. Cells were trypsonized from the well and counted manually 
using a standard cell counter under a microscope. 

Bromodeoxyuridine (BrdU; BD Pharmingen) and Ki67 Assays: 
BrdU is an S phase cell cycle marker which gets incorporated into 
dividing cells and Ki67 is an antigen expressed during all phases of the 
cell cycle. The BrdU assay was performed per manufacturer instructions. 
Briefly, cells in monolayer were first pulsed with 10µM BrdU overnight 
(16hrs). Cells (1x106 per 50µL) were permeabilized with BD Cytofix/
CytopermTM Buffer followed by BD Cytoperm Plus BufferTM. After 
fixation/ permeabilization process, cells were treated with DNase to 
expose incorporated BrdU. To detect proliferating cells, samples were 
then incubated with FITC-conjugated anti-BrdU antibody for 20min 
and rinsed before analyzing on the flow cytometer. Incubations and 
rinses were performed with either DPBS (+3% FCS/0.09% sodium 
azide) or BD Perm/WashTM Buffer. For the Ki67 assay, cells were 
fixed as per the BrdU assay and a monoclonal antibody against Ki67 
(BD Pharmingen) was applied for 30 minutes at room temperature, 
washed in PBS washing buffer (1%FBS, 0.09%NaN3, pH 7.2), and 
Alexafluor488-conj (BD Via Probe) was added as the secondary 
antibody used for detection. All flow cytometry was performed on a 
BD LSRII flow cytometer, and data analyzed with Flow Jo software. 
Proliferation experiments were performed on day 4 of all treatments. 
All data is presented as the percentage of cells staining positive for dye 
incorporation over the total number of nuclei counted.

Figure 1: Demonstration of a pure NPC population. Immunohistochemistry was 
used to verify that we have a pure NPC population. Stains against the neural 
stem cell marker nestin and the nuclear marker hoechst demonstrate that we 
have a pure NPC population as every cell (denoted by Hoechst) co-expresses 
nestin.

Figure 2: PDGF-AA and BDNF do not influence mNPC proliferation.  An mNPC growth curve (A), a Ki67 flow cytometry assay (B), and a BrdU flow cytometry assay 
(C) demonstrate that PDGF-AA and BDNF do not stimulate NPC growth as measured after 4 days of treatment. All data is presented as compared to a complete media 
positive control as well as a minimal media control (a media non-conducive to cell proliferation). Data is quantified as the number of cells that stain positive for the dye 
over the total number of nuclei counted. *significance, p<.05.
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Figure 3: PDGF-AA and BDNF do not protect NPCs from undergoing apoptosis. NPCs were exposed to harsh, growth factor deprived media which induces cell death 
in the presence and absence of PDGF-AA and BDNF to assess the neuroprotective potential of these factors. A UV/Annexin flow cytometry assay was used to label 
cells that are dead and dying. Scatterplots are presented above and the number of live healthy cells is quantified in the bottom left corner as the number of cells that do 
not stain for either UV or Annexin over the total number of nuclei counted. Complete media (EGF and FGF was added to the minimal media, upper left), minimal media 
(without EGF and FGF, upper right), BDNF in minimal media (lower left), PDGF-AA in minimal media (lower right).

Cell viability and apoptosis: A UV/annexin flow cytometry stain 
assessed the percentage of dead and dying cells, as described previously 
[22]. In brief, UV live/dead dye (Invitrogen) permeates into and reacts 
throughout the volume of cells which have lost their membrane integrity, 
thus labeling necrotic cells. Annexin-alexa fluor 647 (Invitrogen) labels 
phospholipid phosphatidylserine residues on the exterior surface of 

apoptotic cells (translocation of PS is one of the earliest indicators 
of apoptosis). These antibodies were added to cells after four days of 
treatment in culture, and analyzed using flow cytometry. All flow data is 
presented as a scatterplot demonstrating stained cells, and is quantified 
in the lower left corner of each plot as the number of cells that are not 
positive for either stain (ie, are double negatively labeled) over the total 
number of cells counted.



Page 4 of 7

Citation: Soltys J, Perrone C, Knight J, Mao-Draayer Y (2011) PDGF-AA and BDNF Promote Neural Stem Cell Differentiation. J Neurol Neurophysiol 
S4. doi:10.4172/2155-9562.S4-002

J Neurol Neurophysiol                                                                                                                               ISSN: 2155-9562 JNN, an open access journal Neurorehabilitation & Neural Repair

Figure 4: PDGF-AA and BDNF influence NPC differentiation. The ability for PDGF-AA and BDNF to induce NPC differentiation was assessed after 3 days (A) and 4 
days (B) of treatment by RT-qPCR against PDGFRa and Olig 1 (oligo-lineage) and B3-Tub (neuronal lineage) markers. All data is presented as normalized mRNA levels 
against the endogenous control b-actin. *significance, p<.05.

RT-qPCR: Total RNA was isolated from PDGF-AA and BDNF 
treated cells (3-day and 4-day treatments) and minimal media 
controls using RNeasy Mini Kit (Qiagen) via manufacturer protocol. 
RNA levels were quantified by Nanodrop. cDNA was constructed 
using Superscript IIITM First-Strand Synthesis Supermix for qRT-PCR 
(Invitrogen). mRNA expression analysis was completed using Applied 
Biosystems 7500 Fast Software real time-quantitative polymerase chain 
reaction (RT-qPCR). Amplification consisted of 50 cycles (95°C for 15 
seconds and 60°C for 1 minute) with approximately 15ng/µL cDNA, 
specific primer pairs for β-tubulin III (β3-tub; neuronal marker), 
PDGFR-α and Olig1 (oligodendrocyte markers); and TaqMan Master 
Mix (all Applied Biosystems). Transcripts were normalized against 
the endogenous control marker β-Actin and subsequently presented 

as fold differences relative to lineage marker and treatment condition. 
The 2-∆∆Ct method was used to calculate the relative expression of genes. 
Each primer was run in triplicate.

Immunohistochemistry: Cells were stained for differentiation 
markers and for nestin as confirmation of neural stem cell phenotype. 
Cells were plated on coated (as described above) coverslips in 24-well 
plates. After a one week treatment period, being re-treated at 4 days, 
coverslips were fixed in Zamboni’s fixative (4% paraformaldehyde; 
15% picric acid). Cells were incubated in block (10% horse serum, .3% 
Triton) in the following antibodies at 4°C: β-tubulin III (Sigma; 1:200), 
GFAP (DAKO; 1:250), Nestin (Novus Biologicals; 1:250), PDGFRα 
(Santa Cruz; 1:50), O4 (COMPANY). Following 2 washes, anti-chicken 
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Cy2 and anti-rabbit Cy3 (both Jackson Immunoresearch) were applied 
as secondary antibodies for their respective primaries for 1 hour at 4°C. 
All data is shown as a representative coverslip image with quantification 
as the total number of positively-stained cells over the total number of 
nuclei counted.

Statistical analysis 

One-way ANOVA was performed to determine statistical 
significance of the data, followed by Tukey’s post-test to compare 
individual samples. Analyses were done using Prism 5 (Graph Pad) 
software. All experiments were replicated for n≥3 biological replicates.

Results
PDGF-AA and BDNF do not stimulate NPC proliferation

We investigated the influence of BDNF and PDGF-AA on mNPC 
proliferation in three distinct assays: quantifying absolute cell number 
on a growth curve (Figure 1A), a Ki67 proliferation assay (Figure 1B), 
and a BrdU proliferation assay (Figure 1C). Each assay demonstrates 
that BDNF and PDGF-AA do not stimulate NPC proliferation.

PDGF-AA and BDNF do not rescue dying cells from apoptosis

As we saw no influence and proliferation, we asked the question if 
PDGF-AA and BDNF are able to protect NPCs in harsh conditions that 
normally induce cell death. We utilized a UV/Annexin flow cytometry 
assay to determine the percentage of cells that do not stain positive for 
either UV live/dead die (labeling necrotic cells) and Annexin (labeling 
dying cells; Figure 2) when NPCs are exposed to growth-factor deprived 
media, media that will typically induce apoptosis. Neither PDGF-AA 
nor BDNF exert a protective effect on NPCs.

PDGF-AA and BDNF influence NPC differentiation in a 
time-dependent manner

As neurotrophic factors have a variety of roles in promoting 
differentiation, we investigated how PDGF-AA and BDNF induce 
NPC differentiation over time. We analyzed mRNA level expression 
for neuronal and oligodendrocyte-lineage markers after 3 days and 4 
days of differentiation (Figures 3A and 3B, respectively). Our findings 
suggest that PDGF initially stimulates differentiation non-specifically 
as there is global upregulation of the oligodendrocyte markers PDGFRα 
and Olig1, as well as the neuronal marker β3-Tub. These increases were 
transient as 24 hours later PDGFRα was the only factor that remained 
upregulated with high dose PDGF-AA treatment. BDNF also non-
specifically induced mRNA expression changes over time. At 3 days, 
only Olig1 expression had increased while at day 4 PDGFRα, Olig1 and 
3-Tub were all increased.

As PDGF-AA has been used to induce OPC differentiation, we 
further examined these transient and time dependent changes by 
quantifying the protein expression of PDGFRα, β3-Tub, and the 
astrocyte marker GFAP after 1 week of differentiation in the presence 
of PDGF-AA (Figure 5). At this time point most cells are committed 
to differentiation, indicated by the very small percentage of cells that 
only stain positive for the NPC marker nestin (Figure 5I-K). 10ng/ml 
PDGF-AA treatment increases the percentage of cells that stain positive 
for PDGFRα, without changes in the expression of β3-Tub and GFAP as 
compared to MM control. As PDGFRα is a more immature marker for 
differentiation, we further investigated this finding by staining for O4, a 
marker for more mature oligodendrocytes. After 1 week in culture, no 
cells stained positive for O4 (Figure 5N). 

To verify that these findings represent differentiation from a pure 
neural stem cell population, we stained our cell population with the 
NPC marker nestin prior to differentiation media exposure. Our NPC 
population is pure, as every cell (detected by the nuclear stain Hoechst) 
stains positive for nestin (Figure 5M). 

Discussion
The key finding of this study is that PDGF-AA stimulates NPC 

differentiation into the oligodendrocyte lineage (Figure 4) and we 
provide further confirmation that BDNF and PDGF-AA are not toxic 
to NPCs (Figures 1 and 2).

Our finding that BDNF is capable of stimulating NPC differentiation 
is consistent with previous work done by Silva et al. [23] in which 
they assessed the differentiation potential of neurospheres grown in 
culture when exposed to BDNF. They found increased differentiation 
of NPCs into the neuronal lineage after 4 days in vitro, which can be 
manipulated by the presence of other extracellular factors. We confirm 
this finding via RT-qPCR and further suggest that NPCs are capable of 
differentiating into the oligodendrocyte lineage as we observed elevated 
expression of PDGFRα and Olig1 in response to BDNF treatment 
(Figure 3). Notably, there appears to be time-dependent expression 
of mRNA for the various neuronal lineages. Thus, BDNF appears to 
prime the NSC for differentiation by upregulating the neuronal and 
oligodendrocyte lineage pathways, but ultimately other factors present 
in the microenvironment may be the critical factors in driving NSC 
fate. 

NSC differentiation into the oligodendrocyte lineage was seen 
after one week of PDGF-AA treatment (Figure 4). While PDGF-AA 
is a potent mitogen for OPCs [20,24], the definitive role it plays in 
inducing NPCs into OPCs is not completely understood. Other studies 
performed with embryonic stem cells suggest that it is capable of 
inducing both neuronal and oligo-lineage differentiation [19,25]. Here 
we use a postnatal murine line to investigate this further as there are 
known differences between embryonic and postnatal stem cells. We 
confirm the capacity for PDGF-AA to induce NPC differentiation into 
the oligodendrocyte lineage in post-natal NPCs. Importantly, PDGF 
responsive cells are present in high numbers in MS lesions and likely 
play a critical role in remyelinating damaged lesions. Chronically, 
however, this population may be depleted [26]. Taken together, our 
findings suggest that PDGF-AA is capable of stimulating NPCs to refill 
this pool. Future investigations that quantify the level of PDGF-AA 
expression over time in inflammatory lesions, as well the NPC response 
to therapeutic administrations of PDGF-AA will likely prove to be 
fruitful in elucidating how NPCs respond to the need for remyelination 
as well further explain why the NPC response ultimately fails.

Neurotrophins and neurotrophic cytokines that regulate neuronal 
and oligodendrocyte development are deficient in MS [27,28]. The 
benefits of therapeutic administration of these factors is highlighted 
by in vivo studies that demonstrate the neuroprotective properties of 
BDNF and PDGF-AA when applied acutely to inflammatory lesions 
[15-17,29]. Adapting these approaches for more chronic protection 
demands knowledge of which cells these factors influence so that they 
can be stimulated at the appropriate time and anatomical position. 
Thus, our in vitro approach that investigates the molecular response 
of NPCs to these factors is critical to identifying the environment 
needed for remyelination. By coupling this basic knowledge with 
future investigations that quantify the expression level changes of 
neurotrophic factors over time in MS pathogenesis, we can begin to 
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Figure 5: PDGF-AA treatment promotes oligo-lineage differentiation. Immunohistochemistry against PDGFRa (oligo-lineage, A-D), B3-Tub (neuronal lineage, E-H), 
GFAP (astrocyte lineage, I-L), and O4 (Mature oligo lineage, M) was used to determine how PDGF-AA induces differentiation after 1 week of treatment. All images 
represent a representative confocal field of view, and quantification (D, H, I) is presented as the total number of positively stained cells over the total number of cells per 
field, counted by the nuclear marker Hoechst. At one week, nearly all cells are differentiated, as determined by the absence of the neural stem cell marker nestin (I, J, 
K). *significance, p<.05.

design neurotrophic factor therapies that directly combat disease 
pathology by maintaining a population of cells capable of remyelination.

In conclusion, our findings demonstrate that BDNF and PDGF-AA 
do not stimulate NPC proliferation or induce apoptosis, but are capable 
of inducing NPC differentiation into the oligodendrocyte lineage. The 
differentiation capabilities are time dependent and may depend on other 
extracellular factors. These findings highlight the prospects of stem cell 
therapies to promote remyelination of MS lesions, and demand future 
studies to quantify the expression levels of neurotrophic factors such 
as BDNF and PDGF-AA over the MS disease course in order to design 
replacement therapies that can promote more efficient remyelination.
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