Research Article
11C-Choline PET-CT Detection of Osseous Metastases versus Bone Scan in Newly Diagnosed High Risk Prostate Cancer Patients-A Pilot Study
Nasarachi E Onyeuku1*, Diandra N Ayala-Peacock1, Pradeep Garg2 and William Blackstock A31Comprehensive Cancer Center of Wake Forest University, Winston Salem, North Carolina, USA
2Executive Director, Molecular Imaging Center, Biomedical Research Foundation, Shreveport, Louisiana, USA
3Professor, Department of Radiation Oncology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, North Carolina, USA
- *Corresponding Author:
- Nasarachi E Onyeuku
Comprehensive Cancer Center of Wake Forest University
Winston Salem, North Carolina, USA
E-mail: [email protected]
Received date: September 20, 2013; Accepted date: October 17, 2013; Published date: October 22, 2013
Citation: Onyeuku NE, Ayala-Peacock DN, Garg P, William Blackstock A (2013) 11C-Choline PET-CT Detection of Osseous Metastases versus Bone Scan in Newly Diagnosed High Risk Prostate Cancer Patients-A Pilot Study. J Nucl Med Radiat Ther S6:017. doi:10.4172/2155-9619.S6-017
Copyright: © 2013 Onyeuku NE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Purpose: Identification of osseous metastatic prostate adenocarcinoma (PCa) is traditionally based on bone scan and computerized tomography (CT) imaging. Positron emission tomography (PET) has been investigated to improve detection of metastatic disease. Given the high number of false positive and false negative results with 18-fluorodeoxyglucose (18F-FDG) PET, novel tracers including 11C-Choline have been investigated for earlier identification metastatic disease. We present a prospective pilot study comparing 11C-Choline PET/CT against traditional bone scan in detecting osseous metastases in newly diagnosed high risk PCa. Methods: High-risk PCa patients underwent a standard initial workup: H&P, transrectal US-guided biopsy, PSA evaluation, CT scan, and bone scan. An experimental 11C-Choline PET/CT scan served to evaluate the extent of disease and predict for occult metastases. Pre-treatment bone scan and 11C-Choline PET/CT interpretations were compared with follow-up imaging, PSA, and clinical assessments to determine the predictive value of pre-treatment 11C-Choline imaging and overall outcomes. Results: Nine patients were successfully enrolled with 11C-Choline PET imaging during the initial workup. Three patients had evidence of osseous metastases on both CT and bone scans. Two of three patients had clinical findings consistent with their imaging, with all three patients exhibiting baseline PSA levels >50. Of the three patients deemed metastatic by conventional radiography, only two of the three corresponding 11C-Choline PET/CT images were in agreement with conventional imaging. The final patient had a negative 11C-Choline study with a T10 sclerotic focus on conventional imaging that was unchanged in follow-up scans despite post-treatment biochemical failure. A fourth patient without evidence of osseous metastatic disease on conventional scans demonstrated a positive 11C-Choline PET/CT scan on initial workup. In follow-up, the patient had evidence of diffuse osseous metastatic disease visualized on conventional imaging. Conclusion: In this limited prospective series, our results suggest an increased sensitivity of 11C-Choline PET/ CT in identifying active lytic lesions and true bony metastasis.