alexa 28-Homobrassinolide-Induced Exaggerated Growth, Biochemical Molecular Aspects of Brassica Juncea L. RLM-619 Seedlings under High Temperature Stress
ISSN: 2329-9029

Journal of Plant Biochemistry & Physiology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

28-Homobrassinolide-Induced Exaggerated Growth, Biochemical Molecular Aspects of Brassica Juncea L. RLM-619 Seedlings under High Temperature Stress

Sandeep Kumar1*, Geetika Sirhindi1 and Renu Bhardwaj2
1Department of Botany, Punjabi University, Patiala -147 002, India
2Department of Botanical & Environmental Sciences, GNDU, Amritsar, India
Corresponding Author : Sandeep Kumar
Department of Botany
Punjabi University, Patiala -147 002, India
Tel: +91 9810685352
E-mail: [email protected]
Received April 10, 2014; Accepted May 24, 2014; Published May 30, 2014
Citation: Kumar S, Sirhindi G, Bhardwaj R (2014) 28-Homobrassinolide-Induced Exaggerated Growth, Biochemical Molecular Aspects of Brassica Juncea L. RLM- 619 Seedlings under High Temperature Stress. J Plant Biochem Physiol 2:127. doi: 10.4172/2329-9029.1000127
Copyright: © 2014 Kumar S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

The present study was pertaining to study the mechanism and signaling of BRs under high temperature stress in Brassica juncea L. plants. Results advised that high temperature stress reduced the shoot length, root length, fresh weight of the plants but 28-homobrassinosteroids (28-homoBL) treatment reduced the toxic effect of high temperature stress by improving the same of B. juncea L. plants. To ascertain these free radical scavenging enzymes (superoxide dismutase (SOD), Catalase (CAT), Peroxidase (POD), Ascorbate peroxidase (APOX), Polyphenol oxidase (PPO) and Indole acetic acid oxidase (IAAO) and lipid oxidation (MDA) were assayed along with photosynthetic pigments, total carbohydrates, reducing sugars and non-reducing sugars. All studied scavenging enzymes activities were ameliorated by the homoBL treatments. The pigments decreased under temperature stress were also protected by homoBL treatments. Proteins profiling by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDSPAGE) were also studied to know the behavior of proteins under temperature stress as well as with the treatment of homoBL. Protein bands disappeared in temperature stress while in the presence of homoBL treatment existing proteins displayed more accumulation leading to the appearance of new bands. Native-PAGE of SOD, CAT and POD suggested the presence of in isoenzymic forms in cells. Application of different concentration of homoBL increased intensities of these isoenzymes under temperature and normal condition as compared to control untreated seedlings. The gene expression of SOD and CAT also suggested that synthesis these enzymes were decreased under high temperature stress but ameliorated with the treatment of homoBL. Present study demonstrated that 28-homoBL have stress-ameliorative properties in B. juncea seedlings exposed to high temperature stress by improving seedling growth and enhancing protein content as well as activities of SOD, CAT, APOX, PPO and IAA Oxidase. Further, it was suggested by decreasing the MDA content after the treatments of 28-homoBL. This study demonstrate the culmination of BR’s as an anti-stressor for protection of plant exposed to high temperature stress but extensive studies are still needed to know the various aspects related to stress and role of brassinosteroids in regulating them at molecular and signaling level.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords