alexa 4.1 Proteins: Ion Transporters in Check
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

4.1 Proteins: Ion Transporters in Check

Wataru Nunomura1,2*, Hideki Wakui2, Yuichi Takakuwa3 and Philippe Gascard4

1Center for Geo-Environmental Science, Graduate School of Engineering and Resource Science, Akita University, Akita, Japan

2Department of Life Science, Graduate School of Engineering and Resource Science, Akita University, Akita, Japan

3Department of Biochemistry, Tokyo Women’s Medical University, Tokyo, Japan

4Department of Pathology, University of California at San Francisco, San Francisco, California, USA

*Corresponding Author:
Wataru Nunomura
Center for Geo-Environmental Science and Department of Life Science
Graduate School of Engineering and Resource Science
Akita University, Akita, Japan
Tel/Fax: +81-18-889-2449
E-mail: [email protected]

Received date: April 04, 2013; Accepted date: April 08, 2013; Published date: April 11, 2013

Citation: Nunomura W, Wakui H, Takakuwa Y, Gascard P (2013) 4.1 Proteins: Ion Transporters in Check. J Proteomics Bioinform 6:237-244. doi:10.4172/jpb.1000286

Copyright: © 2013 Nunomura W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The classical function of 4.1R in erythrocytes is to contribute to the mechanical properties of the membrane by promoting the interaction between spectrin and actin. It is now well recognized that 4.1R is required for the stable anchorage of numerous cell surface erythrocyte membrane proteins. 4.1R is the prototypical member of the family of 4.1 proteins, which are expressed in many cell types, besides erythrocytes. The other members of the protein 4.1 family include 4.1N, 4.1G, and 4.1B.NHE1 (Na+/H+ exchanger isoform 1) has been reported to be hyperactive in 4.1R-null erythrocytes, supporting a functional interaction between NHE1 and 4.1R. We recently demonstrated that 4.1R binds directly to the cytoplasmic domain of NHE1 (NHE1cd). This interaction involves an EED motif in the 4.1R FERM (4.1/ezrin/radixin/moesin) domain and two clusters of basic amino acids in the NHE1cd, K519R and R556FNKKYVKK, previously shown to mediate PIP2 (phosphatidylinositol 4,5-bisphosphate) binding. The affinity of this interaction is reduced in hypertonic and acidic conditions, demonstrating that this interaction is of electrostatic nature. The binding affinity is also reduced upon binding of Ca2+/CaM (Ca2+-saturated calmodulin) to the 4.1R FERM domain. We propose that 4.1R regulates NHE1 activity, through a direct protein-protein interaction that can be modulated by intracellular pH, as well as Na+ and Ca2+ concentrations. In this review, we discuss the increasing evidence for an important role for members of the protein 4.1 family of membrane skeletal proteins, in the regulation of various ion transporters in erythrocytes and in non-erythroid cells.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version