alexa 5-Fluorouracil Induces Plasmonic Coupling in Gold Nanospheres: New Generation of Chemotherapeutic Agents | OMICS International
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

5-Fluorouracil Induces Plasmonic Coupling in Gold Nanospheres: New Generation of Chemotherapeutic Agents

Mona B. Mohamed1,2, Nour T. Adbel-Ghani3, Ola M. El-Borady2,4* and Mostafa A. El-Sayed5

1National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt

2NanoTech Egypt for Photoelectronics, Dreamland, October city, Egypt

3Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

4Chemistry Department, Modern Science & Arts University, October city, Egypt

5Laser dynamics laboratory, Georgia Institute of Technology, Atlanta, USA

*Corresponding Author:
Dr. Ola Mohamed El Borady
Chemistry Department
Modern Science & Arts University
October city, Egypt
Tel: 01004725266
E-mail: [email protected]

Received Date: September 08, 2012; Accepted Date: September 10, 2012; Published Date: September 12, 2012

Citation: Mohamed MB, Adbel-Ghani NT, El-Borady OM, El-Sayed MA (2012) 5-Fluorouracil Induces Plasmonic Coupling in Gold Nanospheres: New Generation of Chemotherapeutic Agents. J Nanomed Nanotechol 3:146. doi:10.4172/2157-7439.1000146

Copyright: © 2012 Mohamed MB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Loading 5- Fluorouracil (5-FU) into gold nanoparticles (AuNPs) could enhance its activity as anticancer drug hugely by enhancing its ability for penetration through the cell membrane. Accordingly, this work is devoted to loading 5-FU into AuNPs surface and studying the binding mechanism of the drug to the surface of the gold nanoparticles. Our finding indicates that new absorption band appears at longer wavelength upon loading 5-FU into gold nanospheres capped with citrate. This near IR band is due to induced surface plasmon coupling via hydrogen bonding between 5-FU and surface capping AuNPs. This leads to great enhancement of the drug action as chemotherapeutic as well as photothermal agents. Factors which affect the binding between 5-FU and the AuNPs such as pH, time after mixing the
drug with AuNPs, concentration of the 5-FU, have been studied in detail. Accordingly, the binding interaction is proven to be via hydrogen bonding. Upon the investigation of thermal and photo satiability, the formed composite [email protected] AuNPs showed high stability towards these factors. The spectral and morphological studies were measured via UV-VIS spectroscopy and Transmission Electron Microscopy (HR-TEM). Remarkable increases in the drug anticancer activity upon loading into AuNPs were observed for the cell viability test of human colon cancer (HCT16).

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version