alexa A Biomechanical Finite Element Study of Subsidence and Migration Tendencies in Stand-Alone Fusion Procedures - Comparison of an In Situ Expandable Device with a Rigid Device
ISSN: 2165-7939

Journal of Spine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Biomechanical Finite Element Study of Subsidence and Migration Tendencies in Stand-Alone Fusion Procedures - Comparison of an In Situ Expandable Device with a Rigid Device

Kiapour A1, Kiapour AM1, Kodigudla M1, Hill GM2, Mishra S2 and Goel VK1
1Engineering Center for Orthopedic Research Excellence (E-CORE) 5046 NI, College of Engineering, University of Toledo, Toledo, OH43606, USA
2Wenzel Spine, Inc., 206 Wild Basin Drive, Austin, TX, USA
Corresponding Author : Dr. Vijay K. Goel
Distinguished University Professor
Endowed Chair & McMaster-Gardner Professor of Orthopedic Bioengineering Co- Director
Engineering Center for Orthopedic Research Excellence (E-CORE) 5046 NI
College of Engineering, University of Toledo, Toledo, OH43606, USA
Tel: 419- 530-8035
Fax: 419-530-8076
E-mail: [email protected]
Received May 21, 2012; Accepted July 14, 2012; Published July 16, 2012
Citation: Kiapour A, Kiapour AM, Kodigudla M, Hill GM, Mishra S, et al. (2012) A Biomechanical Finite Element Study of Subsidence and Migration Tendencies in Stand-Alone Fusion Procedures – Comparison of an In Situ Expandable Device with a Rigid Device. J Spine 1:120. doi:10.4172/2165-7939.1000120
Copyright: © 2012 Kiapour A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Abstract Study Design: Biomechanical study using a finite element model of the lumbar functional spinal unit (FSU). Objectives: To compare the biomechanics of a novel in situ expandable posterior lumbar interbody fusion (PLIF) device, with a traditional rigid cage used in a stand-alone fashion. Methods: An experimentally validated intact finite element (FE) model of the L4-L5 FSU was altered to model expandable VariLift-L and BAK devices in a stand-alone fashion. A follower compressive pre-load of 400 N plus 8.0 Nm of flexion, extension, lateral bending, and axial rotation moments were applied to the model to simulate the physiological loadings. The kinematics and load sharing among various models were compared. Results: Range of motion analyses showed that fusion utilizing VariLift-L expandable stand-alone device was more effective in limiting motion of the spinal column than the BAK device. The normal load at the device/endplate interface for the VariLift-L was similar to that of the BAK in all loading modes. The A-P shear load for the stand-alone VariLift-L model was higher than the BAK model under flexion. Conclusions: Due to predicted forces along the A-P direction, axial contact loads in flexion and extension, the lordotic slope of the device and the presence of intact annulus in the anterior region of the disc, the tendency of the VariLift-L device to migrate into the canal and subside into the endplate may be lower, despite the higher A-P shear force predicted for the VariLift-L device. This shape and lordotic expandability act to resist A-P shear forces in the flexion mode. The expandable device has the  advantage of adjusting its outer profile to the lordotic angle of the treated segment, ensuring a better contact between the device and endplates. Biomechanically, the VariLift-L interbody fusion device is a good solution for fusion surgery of the lumbar spine segment.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords