alexa A Comparison of Three Bioinformatics Pipelines for the Analysis of Preterm Gut Microbiota using 16S rRNA Gene Sequencing Data | OMICS International | Abstract
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Comparison of Three Bioinformatics Pipelines for the Analysis of Preterm Gut Microbiota using 16S rRNA Gene Sequencing Data

Erica Plummer1*, Jimmy Twin1, Dieter M. Bulach2,3,4, Suzanne M. Garland1,3,5,6 and Sepehr N Tabrizi1,3,5,6

1Murdoch Childrens Research Institute, The Royal Children’s Hospital, Flemington Rd, Parkville, Victoria 3052 Australia

2Monash University, Victoria 3800, Australia

3The University of Melbourne, Victoria 3050, Australia

4Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville Campus, LAB-14, 700 Swanston St, Carlton, Victoria 3053, Australia

5The Royal Women’s Hospital, 20 Flemington Rd, Parkville, Victoria 3052, Australia

6The Royal Children’s Hospital, 50 Flemington Rd, Parkville, Victoria 3052, Australia

*Corresponding Author:
Erica Plummer
Murdoch Childrens Research Institute
The Royal Children’s Hospital, Flemington Rd
Parkville, Victoria 3052 Australia
Tel: +61 1300 766 439
E-mail: [email protected]

Received date: November 17, 2015; Accepted date: December 22, 2015; Published date: December 28, 2015

Citation: Plummer E, Twin J, Bulach DM, Garland SM, Tabrizi SN (2015) A Comparison of Three Bioinformatics Pipelines for the Analysis of Preterm Gut Microbiota using 16S rRNA Gene Sequencing Data. J Proteomics Bioinform 8: 283-291. doi: 10.4172/jpb.1000381

Copyright: © 2015 Plummer E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective and Methods: Analysis of massive parallel sequencing 16S rRNA data requires the use of sophisticated bioinformatics pipelines. Several pipelines are available, however there is limited literature available comparing the features, advantages and disadvantages of each pipeline. This makes the choice of which method to use often unclear. Using gut microbial read data collected from a cohort of very preterm babies, we compared three pipelines commonly used for 16S rRNA gene analysis: MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST), Quantitative Insights into Microbial Ecology (QIIME) and mothur. Using primarily default parameters, the three pipelines were compared in terms of taxonomic classification, diversity analysis and usability.

Results: Overall, the three pipelines detected the same phylum in similar abundances (P>0.05). A difference was observed between the pipelines in terms of taxonomic classification of genera from the Enterobacteriaceae family, specifically Enterobacter and Klebsiella (P<0.0001 and P=0.0026 respectively). We found the analysis time to be quickest with QIIME compared to mothur and MG-RAST (approximately 1 hour as compared to 10 hours and 2 days respectively).

Conclusion: This study showed that QIIME, mothur and MG-RAST produce comparable results and that regardless of which pipeline or algorithm is selected for the analysis of 16S rRNA gene sequencing data you are likely to generate a reliable high-level overview of sample composition when analysing faecal samples. The differences we observed at the genus level highlight that a key limitation of using 16S rRNA gene analysis for genus and species level classification is that related bacterial species may be indistinguishable due to near identical 16S rRNA gene sequences. This is important to keep in mind when analysing 16S rRNA gene sequencing data.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7