alexa A Fast Analytic Simulation of Stochastic Mutation and i
ISSN: 2168-9679

Journal of Applied & Computational Mathematics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Fast Analytic Simulation of Stochastic Mutation and its Application to Modeling Cancer Drug Resistance

Colborn JA*

Protocol Intelligence, Inc., 7667 Circulo Sequoia, Carlsbad, CA 92009, USA

*Corresponding Author:
Colborn JA
Protocol Intelligence, Inc.
7667 Ci rculo Sequoia
Carlsbad, CA 92009, USA
Tel: 7604979718
E-mail: [email protected]

Received Date: February 16, 2016; Accepted Date: March 14, 2016; Published Date: March 18, 2016

Citation: Colborn JA (2016) A Fast Analytic Simulation of Stochastic Mutation and its Application to Modeling Cancer Drug Resistance. J Appl Computat Math 5: 293. doi:10.4172/2168-9679.1000293

Copyright: © 2016 Colborn JA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Random “Darwinian” mutation is a primary mechanism by which cancer and pathogens develop resistance to drugs, and this process has been mathematically modeled extensively. Analytic models employ simple equations and allow for very fast computation, but do not accurately predict mutation times or survival probabilities of resistant populations. Stochastic models provide a distribution of probable outcomes but involve more complex mathematics. We present here an analytic method that simulates stochastic mutation with much better accuracy than that of the standard analytic equations. This method is based on an observation that the median stochastic solution emerges at a time close to when the cumulative probability of a first mutant birth approaches unity, which can be calculated analytically. We compare our model to the median stochastic resistant population versus time for varying rates of cell division, natural death, mutation, and drug kill. Generally we find at least an order-of-magnitude reduction in the error of the birth time and the RMS normalized error relative to the standard analytic solution. This method’s speed, accuracy, and simple results make it well-suited as a tool in software and mutation models to survey the resistant heterogeneity of cancers under various treatment plans or to guide a probabilistic analysis with a stochastic model. Such models could advance progress toward a better understanding of the dynamics of resistant subpopulations, better personalized treatment plans, and longer patient survival given the complex and ever-changing sets of drugs, doses, schedules, and cancer genomics of each patient in the clinical setting.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version