GET THE APP

..

Journal of Computer Science & Systems Biology

ISSN: 0974-7230

Open Access

A Kinetic Model of the Monocarboxylate Transporter MCT1 and its Interaction with Carbonic Anhydrase II

Abstract

Joachim Almquist, Patrick Lang, Dieter Prätzel- Wolters, Joachim W. Deitmer, Mats Jirstrand and Holger M. Becker

The enzyme carbonic anhydrase isoform II (CAII), catalyzing the hydration and dehydration of CO2, enhances transport activity of the monocarboxylate transporter isoform I (MCT1, SLC16A1) expressed in Xenopus oocytes by a mechanism that does not require CAII catalytic activity. In the present study, we have investigated the mechanism of the CAII induced increase in transport activity by using electrophysiological techniques and mathematical modeling of the MCT1 transport cycle. The model consists of six states arranged in cyclic fashion and features an ordered, mirrorsymmetric, binding mechanism, where binding and unbinding of the proton to the transport protein is considered to be the rate limiting step under physiological conditions. An explicit rate expression for the substrate flux is derived using model reduction techniques. By treating the pools of intra-and extracellular MCT1 substrates as dynamic states, the time dependent kinetics are obtained by integration, using the derived expression for the substrate flux. The simulations were compared with experimental data obtained from MCT1-expressing oocytes injected with different amounts of CAII. The model suggests that CAII increases the effective rate constants of the proton reactions, possibly by working as a proton antenna.

PDF

Share this article

Google Scholar citation report
Citations: 2279

Journal of Computer Science & Systems Biology received 2279 citations as per Google Scholar report

Journal of Computer Science & Systems Biology peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward