alexa Non- Linear Models of Light-Duty Vehicle Emission Factors Considering Pavement Roughness | OMICS International | Abstract
ISSN: 2165-784X

Journal of Civil & Environmental Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Non- Linear Models of Light-Duty Vehicle Emission Factors Considering Pavement Roughness

Qing Li1, Feng-Xiang Qiao1* and Lei Yu2

1Innovative Transportation Research Institute, Texas Southern University, USA

2College of Science, Engineering and Technology, Department of Transportation, Texas Southern University, USA

*Corresponding Author:
Feng-Xiang Qiao
Ph.D, Professor, Innovative Transportation Research Institute Texas Southern University
3100 Cleburne Street, Houston, Texas, 77004, USA
Tel: 713-313-1915
Fax: 713-313-1856
E-mail: [email protected]

Received Date: December 22, 2017; Accepted Date: February 20, 2017; Published Date: February 24, 2017

Citation: Li Q, Qiao F, Yu L (2017) Non- Linear Models of Light-Duty Vehicle Emission Factors Considering Pavement Roughness. J Civil Environ Eng 7:268. doi: 10.4172/2165-784X.1000268

Copyright: © 2017 Qing L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Emission factors are very important measures for developing an emission inventory, making decisions, designing control strategies, mitigating climate change, and even improving public health, in terms of respiratory system diseases. The emission factors could be either measured from field tests or estimated by an emission model. Existing models seldom consider the impacts of some special factors such as pavement roughness. As the impacts of the pavement roughness on emissions are very complicated, a linear model or physical model may not depict the mappings from affecting factors to resulted emission factors. In this paper, two non-linear models, including K-Nearest Neighbor (KNN) and Neural Network (NN) were built to estimate vehicle emission factors using roughness involved input data. A best fitted model was identified to illustrate the emission pattern along a wide range of pavement roughness. Multiple field tests were conducted in five regions of the State of Texas, United States, with a total of 1,609 km test length. One dedicated test vehicle was employed throughout the test. Pavement roughness was tested using a smartphone based application. All tested data were separated into four groups, each representing a different range of roughness, while the modeling was conducted within each group. The predictive performance of each model was evaluated by (1) correlation coefficient; (2) relative errors; and (3) two tailed unequal variance t-test. Results suggest that, K-NN can be better than NN to model the emission factors for the Texas highway system, and driving on a smoother and rougher pavement result in higher vehicle emissions.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version