alexa A Model of Calcium Homeostasis Linked with Electrostric
ISSN: 2157-7420

Journal of Health & Medical Informatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Model of Calcium Homeostasis Linked with Electrostrictive Energy

Suman Halder1* and Abhay Shankar Chakraborty2

1ST. Thomas College of Engineering & Technology, Kolkata-23

2Raja Bazar Science College, Kolkata

*Corresponding Author:
Suman Halder
ST. Thomas College of Engneering & Technology
E-mail: [email protected]

Received date: October 03, 2011; Accepted date: November 21, 2011; Published date: November 25, 2011

Citation: Halder S, Shankar Chakraborty A (2011) A Model of Calcium Homeostasis Linked with Electrostrictive Energy. J Health Med Informat 3:107. doi: 10.4172/2157-7420.1000107

Copyright: © 2011 Halder S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The present paper describes how calcium homeostasis is related with electrostrictive energy linked with pH homeostasis. The proposed model incorporates electrostrictive energy as input and bone calcium level as output. The model is also comprised of pH homeostasis, antiporter homeostasis, PTH homeostasis and calcium homeostasis. Electrostrictive energy in E. Coli plays very crucial role for homeostasis of bone calcium. As we know that bone calcium plays very important roles, which are linked with fundamental biological processes involving muscle contraction including the cardiac muscles, which can prevent myocardial infarction during heart attack. Tight regulation of the extracellular fluid (ECF) calcium concentration is maintained through the action of calcium sensitive cells. The precise control of calcium ion in extracellular fluids is of great importance for maintaining the health of individuals. The calcium homeostasis is linked with parathyroid hormone and VDR depending on the level of calcium in ECF and formation of osteoblast cells. Also the homeostasis of intracellular calcium ([Ca++]i) and pH (pHi) is important in the cell’s ability to respond to growth factors, to initiate differentiation and proliferation, and to maintain normal metabolic pathways. This model has been simulated by using MATLAB 6.5 in order to facilitate comprehensive understanding of complex electrostrictive energy phenomena concomitant with capacitance relaxation phenomena associated with cancer. It has been revealed from the model that, more is the change of electrostrictive energy more will be the reduction of formation of osteoblast cells and decreased production of bone calcium. Electrostrictive energy linked with pH homeostasis affects the formation of osteoblast cells. The osteoblast cell lineage is responsible for bone development, growth, and remodeling. Variety of hormones and growth factors regulates the development of rapidly dividing osteoprogenitor cells into highly differentiated bone-forming osteoblasts . Activation of E Coli. due to electrostrictive energy reduces formation of osteoblast cells which will affect calcium homeostasis.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version