alexa A Multi-Classifier Approach of EMG Signal Classificatio
ISSN: 2155-9538

Journal of Bioengineering & Biomedical Science
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Multi-Classifier Approach of EMG Signal Classification for Diagnosis of Neuromuscular Disorders

Muzaffar Khan*, Jai Karan Singh and Mukesh Tiwari

S.S.S. Institute of Science and Technology, Bhopal, India

*Corresponding Author:
Muzaffar Khan
S.S.S. Institute of Science and Technology
Bhopal, India
Tel: 075622 21127
E-mail: [email protected]

Received Date: November 26, 2015; Accepted Date: January 27, 2015; Published Date: February 11, 2016

Citation: Khan M, Singh JK, Tiwari M (2016) A Multi-Classifier Approach of EMG signal classification for Diagnosis of Neuromuscular Disorders. J Bioengineer & Biomedical Sci S3:003. doi:10.4172/2155-9538.S3-003

Copyright: © 2016 Khan M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Electromyographic (EMG) signal provide a significant source of information for diagnosis, treatment and management of neuromuscular disorders. This paper is aim at introducing an effective multi-classifier approach to enhance classification accuracy .The proposed system employs both time domain and time-frequency domain features of motor unit action potentials (MUAPs) extracted from an EMG signal. Different classification strategies including single classifier and multiple classifiers with time domain and time frequency domain features were investigated. Support Vector Machine (SVM) and K-nearest neighborhood (KNN) classifier used predict class label (Myopathic, Neuropathic, or Normal) for a given MUAP. Extensive analysis is performed on clinical EMG database for the classification of neuromuscular diseases and it is found that the proposed methods provide a very satisfactory performance in terms overall classification accuracy.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords