alexa A Novel Molecularly Imprinted Polymer for the Selective Removal of Interfering Hemoglobin Prior to Whole Blood Analysis
ISSN: 2161-1009

Biochemistry & Analytical Biochemistry
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Novel Molecularly Imprinted Polymer for the Selective Removal of Interfering Hemoglobin Prior to Whole Blood Analysis

Tumelo Hendrick Tabane and Bareki Shima Batlokwa*

Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana

*Corresponding Author:
Bareki Shima Batlokwa
Department of Chemical a nd Forensic Sciences
Botswana International University of Science and Technology
Private Bag 16, Palapye, Botswana
Tel: +267 4900117 +267 71969805
E-mail: [email protected]

Received Date: February 19, 2017; Accepted Date: March 24, 2017; Published Date: March 27, 2017

Citation: Tabane TH, Batlokwa BS (2017) A Novel Molecularly Imprinted Polymer for the Selective Removal of Interfering Hemoglobin Prior to Whole Blood Analysis. Biochem Anal Biochem 6: 315. doi: 10.4172/2161-1009.1000315

Copyright: © 2017 Tabane TH, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

A heavy red globular protein, hemoglobin, responsible for whole blood red pigmentation often interferes with the identification and quantification of disease associated biomarkers from whole blood, in field of molecular diagnosis. The main challenge is the direct introduction of whole blood as a sample into analyzing instruments because of its physiological complexity and `dirty` nature. For example, the red pigment in whole blood, which is characterized as ‘dirt’, usually co-elute with the biomarkers and masks them from easy chromatographic separation prior to their final detection. It also clogs the instrument’s components such as the separating columns which are known to be sensitive, hence leading to imprecise and inaccurate results during bio-assaying. To address these challenges, our lab synthesised a novel, selective, effective and a robust hemoglobin imprinted polymer, in the form of a powder, through bulk, freeradical polymerization employing molecular imprinting technology, to selectively remove interfering hemoglobin from whole blood samples prior to instrumental analysis of disease associated biomarkers. From the results, the polymer powder effectively removed hemoglobin from whole blood sample as demonstrated by the ultraviolet-visible absorbance reduction from as high as 0.794 Au to lower values of 0.193 Au before and after polymer powder application, respectively. Experimentally, the powder had a high binding ability towards the targeted hemoglobin as demonstrated by the high percentage removal efficiency of 76% from hemoglobin standard solutions, when compared to its low binding ability towards an analogous species, (chlorophyll), at 32% from chlorophyll standard solutions. Furthermore, the polymer powder proved to be robust as it removed hemoglobin interference from the ‘dirty’ complex matrix of real human whole blood samples by up to 74% hemoglobin removal which was comparable to 76% hemoglobin removal from neat standards, thus, the polymer powder demonstrated that it can work effectively in diverse environments of clean and dirty matrix. Furthermore, the polymer powder presented itself as an efficient, selective and non-destructive whole blood clean-up pre-analytical tool that with further research may replace the destructive and non-selective conventional whole blood clean-up strategies such as the commonly employed centrifugation.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords