alexa A Parametric Survival Model When a Covariate is Subject to Left-Censoring
ISSN: 2155-6180

Journal of Biometrics & Biostatistics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Parametric Survival Model When a Covariate is Subject to Left-Censoring

Abdus Sattar1*, Sanjoy K. Sinha2 and Nathan J. Morris1
1Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA
2School of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
Corresponding Author : Abdus Sattar
Department of Epidemiology and Biostatistics
School of Medicine
Case Western Reserve University
10900 Euclid Avenue, BRB, G-19
Cleveland, OH 44106-4945, USA
Tel: 1.216.368.1501
Fax: 1.216.368.1969
E-mail: [email protected]
Received July 05, 2012; Accepted August 20, 2012; Published August 25, 2012
Citation: Sattar A, Sinha SK, Morris NJ (2012) A Parametric Survival Model When a Covariate is Subject to Left-Censoring. J Biomet Biostat S3:002. doi:10.4172/2155-6180.S3-002
Copyright: © 2012 Sattar A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Problem statement: Modeling survival data with a set of covariates usually assumes that the values of the covariates are fully observed. However, in a variety of applications, some values of a covariate may be left-censored due to inadequate instrument sensitivity to quantify the biospecimen. When data are left-censored, the true values are missing but are known to be smaller than the detection limit. The most commonly used ad-hoc method to deal with nondetect values is to substitute the nondetect values by the detection limit. Such ad-hoc analysis of survival data with an explanatory variable subject to left-censoring may provide biased and inefficient estimators of hazard ratios and survivor functions.
 

Method: We consider a parametric proportional hazards model to analyze time-to-event data. We propose a likelihood method for the estimation and inference of model parameters. In this likelihood approach, instead of replacing the nondetect values by the detection limit, we adopt a numerical integration technique to evaluate the observed data likelihood in the presence of a left-censored covariate. Monte Carlo simulations were used to demonstrate various properties of the proposed regression estimators including the consistency and efficiency.

Results: The simulation study shows that the proposed likelihood approach provides approximately unbiased estimators of the model parameters. The proposed method also provides estimators that are more efficient than those obtained under the ad-hoc method. Also, unlike the ad-hoc estimators, the coverage probabilities of the proposed estimators are at their nominal level. Analysis of a large cohort study, genetic and inflammatory marker of sepsis study, shows discernibly different results based on the proposed method.

Conclusion: Naive use of detection limit in a parametric survival model may provide biased and inefficient estimators of hazard ratios and survivor functions. The proposed likelihood approach provides approximately unbiased and efficient estimators of hazard ratios and survivor functions.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords