GET THE APP

..

Journal of Computer Science & Systems Biology

ISSN: 0974-7230

Open Access

A Phylogenetic Approach for Assigning Function of Hypothetical Proteins in photorhabdus luminescens Subsp. laumondii TT01 Genome

Abstract

Razia M, Karthik Raja R, Padmanaban K, Sivaramakrishnan S and Chellapandi P

Polyketides are larger family of structurally diverse natural products with a broad range of biological activity. The occurrence of polyketide synthase gene family/cluster in bacteria is capable to synthesis the polyketides. In this study, sequence and structural similarities of some hypothetical proteins of Photorhabdus luminescens subsp. laumondii TT01 analyzed to assign the functional relationship with polyketide synthases (PKSs) using bioinformatics tools. Many hypothetical proteins of this organism have shown homologies to PKS family on which a significant homolog found to be located at genomic region 2247626-2249476 bp in chromosome 1 carrying identical function. On searching motif and domain, it showed a strong similarity to ketoacyl (KA) synthase I and then to acyl carrier protein. The ketosynthaseacyltransferasedidomain module 5 (2HG4) of Saccharopolyspora erythraea found as a good ortholog and the best template for modeling 3D structure from the sequences of hypothetical proteins. ProFunc and Castp servers used to annotate the structure-function relationship of protein models. The structural aspects at primary and secondary levels also showed a close resemblance to KA synthase. Phylogenetic analysis of this sequence and protein model ensured its function would be -KA synthase showing the functional reliability like ketosynthase, and it has evolutionary relationship with soil bacteria. There was a horizontal gene transfer event to acquire this domain in P.luminescence genome. Consequently, an abundance of PKS gene in the genome of entomopathogenic bacteria will obviously helpful to protect its host nematode from other pathological pervasiveness.

PDF

Share this article

Google Scholar citation report
Citations: 2279

Journal of Computer Science & Systems Biology received 2279 citations as per Google Scholar report

Journal of Computer Science & Systems Biology peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward