alexa A Self-assembling Nanomaterial Reduces Acute Brain Inju
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Self-assembling Nanomaterial Reduces Acute Brain Injury and Enhances Functional Recovery in a Rat Model of Hypertensive Intracerebral Hemorrhage

Lynn Yan-Hua Sang1,2,7, Yu-Xiang Liang3,7, Kwok-Fai So3,4,7,8,9, Gilberto Ka-Kit Leung1,7, Rutledge G Ellis-Behnke5,6,7
and Raymond Tak-Fai Cheung2,4*

1Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China

2Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China

3State Key Lab of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China

4Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China

5Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

6Department of Ophthalmology, Medical Faculty Mannheim, Ruprecht-Karls-University, Heidelberg, Germany

7Department of Anatomy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China

8Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China

9GHM Institute of CNS Regeneration and Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China

*Corresponding Author:
Raymond Tak-Fai Cheung
Department of Medicine, University of Hong Kong
Administration Block, Queen Mary Hospital
Pokfulam, Hong Kong, China
Tel: 852-22554049
Fax: 852-28186474
E-mail: [email protected]

Received Date: July 25, 2014; Accepted Date: August 20, 2014; Published Date: August 27, 2014

Citation: Sang LY, Liang YX, So KF, Leung GK, Ellis-Behnke RG, et al. (2014) A Self-assembling Nanomaterial Reduces Acute Brain Injury and Enhances Functional Recovery in a Rat Model of Hypertensive Intracerebral Hemorrhage. J Nanomed Nanotechnol 5:224. doi: 10.4172/2157-7439.1000224

Copyright: © 2014 Sang LY, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Intracerebral hemorrhage (ICH) carries a high morbidity and mortality rate. High systolic blood pressure promotes hematoma growth. A self-assembling peptide (SAP) can achieve immediate hemostasis via formation of a SAP nanofiber scaffold (SAPNS). A minimally invasive aspiration of hematoma plus local delivery of SAPNS may lead to decompression of brain tissue and prevent hematoma growth.
In a rat model of renovascular hypertension, experimental ICH was induced by a local injection of bacterial collagenase IV into the left basal ganglia. At 3.5 hours after induction of ICH, stereotactic clot aspiration or sham aspiration was performed manually. Following hematoma aspiration, an intrastriatal injection of 1% SAP, saline or sham injection was performed. Hematoma volume and brain swelling were quantified at 24 hours after ICH. Brain sections were immuno histochemically processed for myeloperoxidase and CD68 to detect the inflammatory infiltration in the perihematomal area. Perihematomal apoptotic cell death was determined using TUNEL staining. Functional recovery was assessed using neurological severity score and modified limb placement test at 1, 3, 7, 10 days after ICH.
The combined treatment with hematoma removal and locally delivered SAPNS decreased hematoma volume, hematoma growth, brain edema, perihematomal inflammatory cell infiltration and apoptosis, as well as improved sensorimotor functional recovery.
Locally delivered SAPNS after hematoma aspiration may prevent hematoma growth, facilitate the repair of ICHrelated brain injury and promote functional recovery. Such combined treatment may be effective in patients with hypertensive ICH.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords